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Kurzfassung

In dieser Arbeit entwickeln wir ein visuelles Analysesystem, das die Vorhersage, Analyse
und Kommunikation der Ergebnisse von COVID-19-Krankenhausaufenthalten unterstützt.
Obwohl mehrere reale Datensätze über COVID-19 öffentlich verfügbar sind, konzentriert
sich der Großteil der aktuellen Forschung auf die Erkennung der Krankheit in Rönt-
genbildern der Brust. Bislang gibt es keine Arbeit, die Erkenntnisse aus medizinischen
Bilddaten mit denen aus klinischen Daten kombiniert und die Wahrscheinlichkeit eines
Aufenthalts auf der Intensivstation, einer Beatmung oder eines Todesfalls vorhersagt.
Darüber hinaus hat sich die bisherige Forschung noch nicht auf die Vermittlung der
Ergebnisse an die breite Öffentlichkeit konzentriert. Um die Vorhersage, Analyse und
Kommunikation der Ergebnisse von COVID-19-Krankenhausaufenthalten auf der Grund-
lage eines öffentlich zugänglichen Datensatzes zu unterstützen, der sowohl elektronische
Gesundheitsdaten als auch medizinische Bilddaten umfasst, führen wir die folgenden drei
Schritte durch: (1) automatisierte Segmentierung der verfügbaren Röntgenbilder und
Verarbeitung der klinischen Daten, (2) Entwicklung eines Modells für die Vorhersage von
Krankheitsverläufen und Vergleich mit modernsten Vorhersagewerten für beide Datenquel-
len, medizinische Bilder und klinische Daten, und (3) die Kommunikation der Ergebnisse
für drei verschiedene Nutzergruppen (medizinische und klinische Experten, Experten für
Datenanalyse und die allgemeine Bevölkerung) über ein interaktives Dashboard. Das
Dashboard ist so konzipiert, dass die Benutzer benutzerspezifische Aufgaben lösen können,
die ebenfalls in dieser Arbeit definiert wurden. Vorläufige Ergebnisse deuten darauf hin,
dass die Vorhersageergebnisse durch die Kombination von medizinischen Bilddaten mit
klinischen Daten verbessert werden, während sich die Analyse und Kommunikation von
Krankenhausaufenthaltsergebnissen als ein breites und bedeutendes Thema im Rahmen
der COVID-19-Prävention erweist.
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Abstract

We propose a visual analytics framework to support the prediction, analysis, and com-
munication of COVID-19 hospitalization outcomes. Although several real-world data
sets about COVID-19 are openly available, most of the current research focuses on the
detection of the disease through chest X-ray images. Until now, no previous work exists
on combining insights from medical image data with knowledge extracted from clinical
data, predicting the likelihood of an intensive care unit (ICU) visit, ventilation, or decease.
Moreover, available literature has not yet focused on communicating such results to the
broader society. To support the prediction, analysis, and communication of the outcomes
of COVID-19 hospitalizations on the basis of a publicly available data set comprising
both electronic health data and medical image data Saltz et al. [2021], we conduct the
following three steps: (1) automated segmentation of the available X-ray images and
processing of clinical data, (2) development of a model for the prediction of disease
outcomes and a comparison to state-of-the-art prediction scores for both data sources,
i.e., medical images and clinical data, and (3) the communication of outcomes to three
different user groups (namely, medical and clinical experts, experts in data analytics, and
the general population) through an interactive dashboard. The dashboard is designed to
enable users to solve user-specific tasks, also defined in this work. Preliminary results
indicate that the prediction results are improved by combining medical image data with
clinical data, while analysis and communication of hospitalization outcomes prove to be
a wide and significant topic in the context of COVID-19 prevention.
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CHAPTER 1
Introduction

1.1 Motivation

COVID-19 is a respiratory disease that became a pandemic in 2020. The virus spread
quickly throughout the world, instantly affecting the daily lives of mankind. While the
main danger of the disease is the actual illness, it also fuelled social disruption through
fake news and alternative facts. This development, termed infodemic by the World
Health Organization [Hua and Shaw, 2020], is playing down the disease and hindering
strategies combating the pandemics spread [French et al., 2020]. At the time of writing,
the majority of Europe is hit by a fourth wave with increased hospitalization numbers
and deaths. This wave arguably could have been mitigated through higher vaccination
rates in response to a more offensive information strategy in highly trusted media by
governments [Gehrau et al., 2021; French et al., 2020]. It seems increasingly important
to communicate novel insights gained by scientific institutions to the majority of the
population in an understandable manner.

Several real-world datasets about COVID-19 are openly available. With the disease
affecting the lungs, datasets often consist of chest X-rays solely [Akhloufi and Chetoui,
2021] or inherit other data like computed tomography (CT) scans as well as other clinical
data, such as electronic health records [Saltz et al., 2021]. These data can be used to
train models for disease detection [Ahsan et al., 2021; Khan and Aslam, 2020; Zhao et al.,
2020; Li et al., 2020b] or prediction of high risk patients [Dai et al., 2020]. Until now,
no previous work exists on combining insights from medical image data with knowledge
extracted from clinical data for COVID-19, predicting the likelihood of an intensive
care unit (ICU) visit, ventilation or decease. Neither did available literature focus on
presenting results to a broader society including non-domain experts.
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1. Introduction

Figure 1.1: The workflow of the thesis. Radiomics features and clinical user data will be
used to train respective models which can be combined for a final prediction. Models
can also be re-used to predict user input from the application.

1.2 Aim of the Work

The aim of the work is to analyse a publicly available COVID-19 dataset, to predict
hospitalization outcomes using electronic health data as well as medical image data and
to finally build a visual analytics application that utilizes this data to communicate
outcome prediction for different user groups. This is illustrated in Figure 1.1. Outcome
communication shall provide novel insights into the complex prediction of COVID-19 in
an effort to increase risk perception and provide decision making support to users, while
also combining extracted image data features with clinical data records. Therefore, we
define three research questions:

1. Segmentation: Does the automatic segmentation yield a reasonable performance?
Reasonable is defined by an automatic segmentation strategy which reduces artifacts
during segmentation on a quantitatively and qualitative evaluation. To what extent
can radiomics features be used as biomarkers?

2. Prediction: When comparing prediction from chest X-ray images and clinical
data prediction to state of the art approaches, does merging the predictions from
X-ray and clinical data have a positive impact on the performance? To what extent
can patients be clustered into groups of patients suitable for easy abstraction and
simpler user input creation?

3. Visual Analytics: How does visual analytics help gaining an understanding into
the complex prediction of COVID-19 outcome for the three types of users we con-
sider? How do our generated dashboards fulfil the analytical process requirements
of each group?

1.3 Methodology

1. Automated segmentation

Segmentation of X-ray images, feature extraction and correlation with radiomics.

2



1.4. Outline

The goal here is not to create a state of the art segmentation strategy but to reuse
existing methods, in particular making use of transfer learning (Section 3.2.3, 4.4.1).
A reasonable segmentation is achieved when we can assure that the automatic
segmentation is to some degree free of artifacts. Since segmented ground truths are
not provided within the dataset, popular similarity metrics may not be feasible,
however other methods have been proposed and were considered [Kohlberger et al.,
2012; Valindria et al., 2017] (Section 3.4.2). Besides radiomics it would also be
possible to train a convolutional neural network (CNN) for this classification setup.
However, as the dataset includes many artifacts, it would be possible that models
would learn to predict COVID-19 based on tubes and patients orientation rather
than representative lung features [Heaven, 2021].

2. Prediction

Prediction of disease outcome and comparison to state of the art prediction scores for
both data sources, i.e., medical images and clinical data. Reasonable performance
is determined by the available results found in the literature which we will compare
against [Ahsan et al., 2021; Khan and Aslam, 2020; Zhao et al., 2020; Li et al.,
2020b], where we find Receiver Operating Characteristic area under curve (ROC-
AUC) and other metrics. Appropriate metrics for unsupervised classification are
considered when choosing clustering algorithms and their hyper-parameters (Section
3.4.2, 4.3.1).

3. Visual Analytics

A list of requirements is defined that should be solved by the application using
the multi-level typology of abstract visualization tasks proposed by Brehmer and
Munzner [2013] . Three user groups are taken into account: medical experts
and clinicians caring about clinical insights; users with an analytical background
such as machine learning (ML) developers interested about prediction models and
performances; general population in need of simplified insights. Each group focuses
on different tasks. A detailed task analysis is conducted in Section 4.2 and tasks
are evaluated in Section 5.2.

4. Validation & Evaluation

The outcome is assessed respectively, using quantitative methods for the segmen-
tation and prediction part and qualitative methods for the visual analytics part,
conducting a case study with users from the general population as well as.

1.4 Outline

In Chapter 2 we describe the problem at hand and define our user groups, as well as
describing the dataset. Chapter 3 presents related work and the theoretical background
of the practical implementation. Here we define terminology, talk about traditional
and deep learning approaches for automatic image segmentation and feature extraction,
finishing with state of the art. We discuss solutions on how to deal with missing data

3



1. Introduction

and large datasets, present data science foundations and finish with an overview about
visual analytics. In Chapter 4 we present our implementations using data analytics as
well as designing the visual analytics part. Chapter 5 summarizes our results, before we
conclude our work and talk about limitations in Chapter 5.2.6.
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CHAPTER 2
Background

2.1 COVID-19

COVID-19 is a respiratory disease which first was detected in China in late 2019. The
virus quickly spread across the world, and with it unprecedented global restrictions went
into place to in an effort to stop this spreading. This was mainly due to presence of high
hospitalization rates in older and vulnerable patients for early virus variants, that have
been reported between 5% and 18% based on age [Fontanet et al., 2020; Mahase, 2020;
Cai et al., 2021] which even increases for patients with preconditions like autoimmune
diseases [Akiyama et al., 2021]. Mortality rates were found to lie between 0.66% on
average to 13% [Mahase, 2020; Akiyama et al., 2021; Cai et al., 2021]. This not only
brought with it the risk of overwhelmed healthcare systems but did so in some regions
[Conti et al., 2020; Legido-Quigley et al., 2020] and will be a risk going forward [Mahase,
2020]. Reduced hospitalization is reported for newer variants [Veneti et al., 2022] as
well as for the help of quickly develop vaccinations, reducing severe cases with an initial
efficacy of 95% for the original virus type also indicating less severe spreading [Polack
et al., 2020; Anderson et al., 2020]. Nonetheless, the COVID-19 pandemic is accompanied
by an infodemic with immensely spreading sources of fake news [Hua and Shaw, 2020],
increasing vaccination hesitancy ultimately hindering successful vaccination [Puri et al.,
2020; Reno et al., 2021] strategies even before COVID-19 [Carrieri et al., 2019]. Carrieri
et al. [2019] show that after an Italian court officially recognized a causal link between
autism and a measles-mumps-rubella vaccine, misinformation spread on nontraditional
(internet-based) media, which lead to a significant reduction in child immunization rates.
Risk perception plays a crucial role in the context of immunization strategies and was
researched before [Deiana et al., 2022; Schmid et al., 2017]. Schmid et al. [2017] state that
for influenza, risk perception has been a significant barrier to vaccination. This included
low worry about the disease as well as not acknowledging vaccination would protect others,
which would lead to a social benefit. Reno et al. [2021] report that low risk perception

5



2. Background

Figure 2.1: Interaction between information media type consumed and trust [Gehrau
et al., 2021]. Data was gathered in Germany in late 2020 with 629 respondents.

was one of the major determinants to vaccine hesitancy and influences vaccine acceptance
overall. They conclude that it is of fundamental importance to develop designated risk
communication strategies for vaccinations, either by dialogue-based interventions or
informative tools.

Figure 2.1 shows usage and trust for media used in Germany. Health authorities and
medical professionals as well as scientists are believed to have a high trust but are not
used as often [Gehrau et al., 2021]. But in times of crisis when medical institutions
are on the verge of collapse, medical personnel is scarce and busy. We can help by
providing applications that communicate information, helping to save time for clinicians
and medical experts as well as providing risk perception tools for the general population
by creating online applications. For medical experts, this has been done already numerous
times, either by providing decision making support and exploration [Furmanová et al.,
2020; Bernold et al., 2019; Furmanová et al., 2021; Floricel et al., 2021] or in efforts to
automate disease detection, for instance in radiology [Han et al., 2021; Chen et al., 2017;
Shiraishi et al., 2000; Souza et al., 2019], and is a very active field of research. With
the pandemic, a lot of research has been shifted towards developing applications with
that in mind, focused on COVID-19 detection using medical images [Tamal et al., 2021;
Vidal et al., 2021; Zebin and Rezvy, 2021; Li et al., 2020a; Zhu et al., 2020] or electronic
health data records [Dai et al., 2020; Li et al., 2020b; Zhao et al., 2020]. Work has not
been done on communicating insights from COVID-19 related data using interactive
dashboards, where this work focuses on.
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2.2. Dataset Description

2.1.1 User Groups

The dataset used in this work, the Stony Brooks COVID-19 [Saltz et al., 2021] is consisting
of medical image data like chest X-rays as well as electronic health data records. It is
presented in detail in the upcoming Section 2.2. That data is of particular interest for
three user groups defined:

1. Medical experts and clinicians: Medical experts are interested in that data as
it could provide decision making support for treatment of upcoming hospitalised
patients. This includes comparing and filtering for similar patients based on
electronic records and preconditions, which could also be used for risk perception
dialogues in individual patient treatments. Medical images are of particular interest,
viewing the disease progression of individual patients based on that data. Predicting
the outcome for fresh images of new incoming patients could be of interest as well.

2. Analytical experts: Analytical users are defined as users having a background in
data analytics, for instance machine learning engineers or data scientists. Feature
engineering and prediction of this COVID-19 datasets has been a hot topic recently.
Thus, users with this background are interested in how data has to be preprocessed
and how valid predictions or segmentation strategies are in a real life scenario which
can be provided by interactive machine learning solutions [Sacha et al., 2017].

3. General population: Everybody is affected by the measurements to detain
COVID-19 spread. Layman users without specific backgrounds in medicine or data
analytics are viable group to which insights of data available can be communicated
which could increase risk perception and better support of certain measurements.

2.2 Dataset Description

The dataset we use in this thesis is introduced here. The Stony Brook University
(SBU) COVID-19 Positive Cases Dataset [Saltz et al., 2021] includes a variety of medical
information in form of tabular data on a per patient level. Patients included in the dataset
were all hospitalized and tested positive using a polymerase chain reaction (PCR) test for
COVID-19. The dataset is abbreviated in the following as SBU dataset. Medical data is
available for one observation per patient, which was chosen using a specific algorithm
[Saltz et al., 2021]. Variables are available in numeric, boolean and categorical form
and will need different preprocessing strategies which are presented in Section 4.1. The
dataset contains many missing values which are dealt with using imputation methods.

Additionally, among others, it contains medical image data in form of chest X-rays (CXR)
images without segmentation masks. Here, multiple images can be available for a patient.
The format of the images is DICOM1 which is a standard format in medical imaging and
output of many medical imaging machines.

1www.dicomstandard.org
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Age ([18-59; 59-74; 74-90]) Gender Kidney Replacement Therapy
Hyptertension Diabetes Coronary Artery Disease
Chronic Kidney Disease Cancer/Tumor Chronic pulmonary disease
ACEi - HBP treatment Antibiotics ARB - Usage of blood widener
Smoking status Cough Shortness of breath (Dyspnea)
Vomiting Diarrhea Abdominal pain

Table 2.1: Medical data features including medical history, acute symptoms and general
information. ACEi: Angiotensin-converting enzyme inhibitors, HBP: high blood pressure,
ARB: Angiotensin Receptor Blockers.

2.2.1 Overview

Tabular data is available for download in form of a Comma-Separated-Value (CSV) file
with N = 1384 patients. For each patient there is one record in the file which is consisting
of information for the patients worst day during the hospitalization stay. In its raw form
there are 131 features available, including identifiers, different potential target variables
as well as partly redundant information.

In general the medical data, also called electronic health data or clinical data in the latter,
consists of two parts in general. One part is historic health data including pre-existing
conditions such as diabetes or heart problems as well as drug usage and symptoms, as
shown in Table 2.1. The other part is mainly laboratory results following medical tests
during the hospital stay, such as blood oxygen levels. Some of this information is also
already specific to a certain state of the patient during the hospital stay. An example
for that would be days ventilated, which indicates how many days a patient has been
ventilated already. Those features have a high impact on some of the target chosen in
the following work and might be removed in order to keep any trained models fair and
prevent information leakage.

Overall there are 562, 376 medical images available in the dataset. Using the online tool
from the cancer archive website2 images were filtered by anatomical site and all Port
Chest images were downloaded (NCXR = 10, 526, 170GB). This included 1330 patients.
Port chest refers to portable CXR which have been recorded with mobile X-ray systems.
The manufacterer is labelled as Carestream Health but no detailed model was provided.
All images are recorded in anterior to posterior (AP) direction, meaning images are
taken from front to back. Generally available CXR datasets are recorded in the opposite
direction, posterior to anterior, [Jaeger et al., 2014] which naturally decreases the amount
of hidden lung structure due to ribs and other corpora.

Images are often available per day. In most cases at least two images in different contrast
settings are provided. Figure 2.2 shows high contrast and normal CXR images from the

2https://nbia.cancerimagingarchive.net/nbia-search/?MinNumberOfStudiesCri

teria=1&CollectionCriteria=COVID-19-NY-SBU
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2.2. Dataset Description

SBU dataset as well as samples from the Montgomery County (MC) and Shenzen datasets
(SD) which are used later for transfer learning. Both datasets have been proposed by
Jaeger et al. [2014]. Images of those datasets are recorded posterior to anterior (PA). In
order to have a solid basis for the transfer learning process, images should be as similar
as possible between the datasets. Thus, high contrast images will not be applicable for
transfer learning and are not used further. Nonetheless the remaining CXR will introduce
increased artifacts due to tubes and cables being present in the pictures. In Section
4.4.2, image pre processing is evaluated which could increase similarity between transfer
learning and available CXR images.

There were several patients in the dataset that did not have normal contrast images.
Those patients have been removed, so that only patients in the dataset that have at
least one rateCXR in a normal contrast setting are kept for further tasks. This resulted
in a final number of N = 1279 patients and 4728 CXR (89GB). 174 (13.6%) patients
deceased, 257 (20.1%) haven been admitted to ICU and 213 (16.7%) were ventilated
during their hospitalization stay.

From those 1279 patient records left in the tabular data, only two were without any
missing records. Only 13 features did not have any missing records. This included target
variables, unique identifiers and some variables closely related to target variables but also
patients age. The strategies with which this dealt are described in Section 4.1 in detail.

2.2.2 Prediction Targets

The dataset inherits multiple variables that could be chosen as prediction targets. In
this work we chose:

(i) the outcome of the decease, as deceased or dismissed from the hospital;

(ii) ventilated during the hospital stay and

(iii) admitted to the ICU.

Focusing on these three outputs makes sense from a clinical standpoint as it helps in
resource planning for limited areas such as ICU or ventilation.

The prediction can now be defined as three separate binary classification cases, which
would lead to several representation issues for the dashboard and potential users, as we
would not be inherently able to produce a implicitly logical outcome for a user including
all targets. Three separate classifiers would lead to three independent predictions. In
order to increase representation and communication of the results, we opted to combine
the classes to a multi-class classification setting. This reduces complexity and enables
communication of results in form of natural probabilities for an outcome to potential
users for the dashboard.
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2. Background

Figure 2.2: Images from the Stony Brooks COVID-19 Dataset, first row; and the
Montgomery County and Shenzen dataset [Jaeger et al., 2014] used for transfer learning
later on, second row. High contrast images were removed from the dataset.

But this also introduces several other problems like class imbalances, how many classes
to present to a user or multi-class classification as a more complex prediction setting per
se which need to be handled by the application and during the thesis.
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CHAPTER 3
Theoretical Background &

Related Work

This chapter gives an overview about the current state of the art in the fields relevant
to the thesis. Currently, new COVID-19 related research is published at a high rate.
The evolving field is influenced by different disease variants, daily updated vaccination
rates and growing data sets over time. First, an overview is given about recent work in
COVID-19 related classification and disease prediction.
This is followed by a recap of traditional and state-of-the-art automated computer vision
approaches including deep learning, where we focus on image segmentation in medical
problem definitions, while repeating basic understandings and problems from the domain.
Additionally, a recap about working with clinical data of tabular form is presented, given
the dataset used in the thesis is composed of both medical images and clinical data.
Common issues including missing or dirty data are presented, as well as strategies on how
to deal with them. Finally we present established views on presenting data and designing
interactive visualizations using visual analytics, defining user groups and respective tasks
for a visualization.

3.1 Recent Work about COVID-19

In general, related literature can be divided between approaches dealing with classification
of COVID-19, mainly using medical image data like CT or X-rays, and prediction of the
disease outcome. Prediction approaches focus on clinical data in form of patient records.

3.1.1 Classification

There have been several publications in the field of computer science about COVID-19
since the outbreak. Many works focus on the detection or classification of the disease while

11



3. Theoretical Background & Related Work

some of them use CT scans instead of X-ray images. Ahsan et al. [2021] a Convolutional
Neural Network (CNN) and Histogram of oriented Gradients (HOG) to detect COVID-19
in chest X-rays. For the same problem, Khan and Aslam [2020] applied a transfer
learning approach to create a CNN classifier by combining publicly available datasets.
Furthermore, online challenges exist tackling the problem of COVID-19 detection in
X-rays [Akhloufi and Chetoui, 2021].

3.1.2 Prediction

Publications about predicting the outcome of the disease are not so commonly encoun-
tered.

Dai et al. [2020] categorize patients into different risk groups using a combining data from
different hospitals in China (N=419). They create risk groups definitions by determining
four core features that influence the risk of a severe COVID-19 infection. Determination
of important features was done using statistical methods and classification is done using
three risk classes by utilizing a scoring model. Severity was diagnosed using heart and
pulmonary function recovery and lung CT findings. There is no further information on
how lung CT was used defining the severity and it was not included in the final risk score
model.

Zhao et al. [2020] use a different version of the Stony Brooks Dataset with N=641 patients
to predict ICU admission and mortality on clinical data which includes laboratory findings
as well. They train Logistic Regression models for ICU admission and mortality and
identify key predictors from the resulting models without giving information about how
well the Logistic Regression models performed in the first place. From that, similarly to
Dai et al. [2020], they choose most important predictors by selecting highly significant
features distinguishing non-admitted and admitted patients to ICU as well as non-
deceased and deceased patients. Patients that received ventilation were counted into ICU
group. The final model classifies between five risk groups for ICU admission and seven
risk groups for mortality using a scoring model that is limited to the most significant
features.

Li et al. [2020b] compare several machine learning models based on underlying health con-
ditions, travel histories and chronic diseases predicting the likelihood of a patients death.
They investigate two datasets available online with Ngithub=28,958 and Nwolfram=1,448
patients with positive rates 1.83% and 8.5% indicating a mortal disease outcome. Due to
the low mortality rates, they treat the prediction as an anomaly detection. They have no
access to medical image data for the patients.

3.1.3 Biomarkers

The most used definition for biomarkers comes from Strimbu and Tavel [2010]. They
define biomarkers as any “objective, quantifiable characteristics of biological processes“,
which may correlate with a reported patient’s current feeling. They differentiate between
biomarkers, Clinical Endpoints and Surrogate Endpoints. Clinical Endpoints are solely
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biomarkers that are variables representing a patient’s current feelings from their own
perspective, including symptoms and well-being. These Endpoints have been thought of
as the only biomarkers for some time. But with the ultimate goal of improving survival
rates in clinical research and medical supplement trials, other well-defined variables can
also be used to model a patient’s disease progression. Those variables exceed the definition
of Clinical Endpoints by being not necessarily actively felt by a subject anymore. Those
variables are extremely helpful in early diagnostics when a treatment is taking a long
time and the clinical outcome may not be available as a near-immediate response to the
medical therapy used, or when a new disease is tackled with novel therapies where no
or infrequent survivals are present. When a biomarker is used over a clinical outcome
as a target, they are defined as a Surrogate Endpoint. There has to be solid scientific
evidence though that a biomarker is able to predict a clinical outcome, for instance by
showing high correlation (and causation).

Medical biomarkers have been defined in multiple publications regarding COVID-19
disease progression [Ponti et al., 2020; Kermali et al., 2020; Malik et al., 2021]. They
agree on lymphocyte, D-dimer, aspartate aminotransferase, creatine kinase, troponin, C-
reactive protein, procalcitonin and erythrocyte sedimentation rate as clinical biomarkers
found to be correlated with severe COVID-19 cases including ICU admission, ventilation
and mortality.

However, biomarkers can also be defined in medical image data, most prominently in
cancer research [Zwanenburg et al., 2020; van Griethuysen et al., 2017; Chen et al.,
2017; Udeshani et al., 2011]. Image biomarkers are special regions of an image, such as
volumes or intensities, that characterize image contents, also referred to as image features
[Zwanenburg et al., 2020][Chapter 1]. The extraction process from medical image data
was thought to be not clearly defined, with a lack of consensus guidelines, which led to
the Image Biomarker Standardisation Initiate [Zwanenburg et al., 2016], proposing a
standardized way of working with medical image data, including segmentation, feature
extraction using reproducible methods based on and other preprocessing techniques
[Zwanenburg et al., 2020][Chapter 2]. Software such as PyRadiomics is developed under
close consideration of these standards.

In the context of COVID-19, no literature focused on the definition of biomarkers has
been found for CXR data. Pu et al. [2020] investigate how CNNs can be used to identify
biomarkers in CT images, especially those that distinguish COVID-19 from pneumonia.
They conclude that there may not exist image features that would distinguish COVID-19
from pneumonia. Apostolopoulos et al. [2020] also use CNNs to discover new reliable
biomarkers in CXR images. Their work focuses on classifying COVID-19 from six other
most common pulmonary diseases given CXR images. The authors conclude that due
to the high classification accuracy, biomarkers for COVID-19 could exist and propose
further work focused on extraction via radiomics might be successful.
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3.2 Segmentation & Feature Extraction in Medical

Imaging Data

Automatic image processing is a very active field of the current scientific landscape
in general, with medical image processing being one special domain. Different goals
have been formulated in this context, stemming from classification and object detection,
clustering or segmentation of images. Outcomes of modern systems vary greatly in
terms of goals and expectations, ranging from automatically detecting diseases, semi-
automatic systems for clinicians — including humans in the loop — to interactive
solutions providing decision support for experts solely. Solutions are motivated by disease
prevention, detection or classification and are derived from medical imaging data. Medical
image data comes in many different shapes and formats, from CT scans to X-ray images
and magnetic resonance imaging (MRI) data. Complexity is only increased by different
diseases that need to be detected by computer vision systems, which results in a high
number of specialized, tailored solutions for diseases based on available data. The lack of
sharing data and solutions with the public is another aspect fuelling challenges about
understanding and reproducing successful solutions [van Griethuysen et al., 2017].

3.2.1 Traditional Approaches

When processing image data with computers, it is first important to understand how
humans actually process images. Humans have developed a great sense of object detection
through evolution for the sake of survival in ancient times. Much of human perception
happens unconsciously, making use of high-level features, as proposed by Ullman [2000].
Different theories exist on how this is achieved in such a quick way, taking into account
prior knowledge, expectations and temporal continuity. A simple but not very likely way
of thinking about this is that we simply store a lot of views of objects in our brain, and,
whenever we perceive something, we compare it to stored images in our brain, similarly
to a database lookup. With so many memories that are kept and accessed unconsciously,
this theory does not align with the fact of the sheer speed with which humans are able to
perceive images. Therefore we are arguably able to abstract things in a very efficient way.

When trying to teach machines how to perceive images, we ultimately struggle in
describing how we do it so quickly. While explaining why we perceive certain objects as
we do, we rather fall back to reason with low-level features that make up the high-level
features. Therefore we define typical shapes and characteristics of objects, made up
of edges and colors, backgrounds or other context information. For instance, when we
are defining the characteristics of a cat in an image, we would most likely argue that it
typically has whiskers, a pair of ears, a tail and four legs. Teaching that to a machine
in a deterministic way, for example when building a simple rule-based approach, is not
straightforward, especially when objects occur in various angles, sizes and variations as
depicted in Figure 3.1. Hard coding rules would not make much sense and the results
would be highly unreliable while the design of such a system would be very expensive
and inflexible.
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Figure 3.1: Different challenges when dealing with image processing in general [Li et al.,
2022].

Figure 3.2: How computers see images. Information is defined as pixel values that are
the basis for computation [Li et al., 2022].
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Figure 3.2 shows a cat and how the computer stores this image in form of pixels as a 2-D
array. In fact this can be represented as a stacked 2-D array in three dimensions for each
color channel, if available. This allows for reliable low-level feature extraction techniques
based on color, edges and shapes. Prince [2012] offers an extensive overview of models
and techniques used in this context, including SIFT, Bag of Words and Histogram of
Oriented Gradients (HoG) to name a few. While those algorithms exploit the fact that
color information in images is available, others have been proposed that focus on gray
scale images where only one color channel is available (see 3.2.4). Dealing with gray scale
images is in fact most often the case in the medical domain, given that radiological and
CT devices generate gray scale or intensity varying images.

Feature extraction methods may result in a high number of dimensions once applied,
thus are often followed by dimensionality reduction step (subsection 3.3.3). Those
reduced features have been used as the input for previous state-of-the-art machine
learning algorithms like logistic regression or support vector machines in automated
image processing applications [Girshick et al., 2014]. This is also shown in Figure 3.4.

While working towards building robust techniques for image processing, one important
topic is also how different objects occur in images as depicted in Figure 3.1. Objects can
be observed in different viewpoints, scales and illumination which influence the feature
extraction process, especially for low-level pixel based representations. Deformation,
illumination and intra-class variation are not solely a challenging aspect in medical
imaging data, but they represent a very specific problem statement that should be
explicitly highlighted.

Segmentation

Image segmentation has been addressed through a number of approaches, including
different problem definitions given the characteristics of a dataset and defined outcomes.
The goal in segmentation is to label pixels to a set of class labels [Prince, 2012, Chapter
7.9.3], aiming at describing regions in an image that are homogeneous, having similar
texture or intensity levels [Pham et al., 2000]. This describes a per-pixel classification
setting. Prince gives another definition of segmentation, as the attempt to infer the
boundaries of objects which can be solved by contour detection [Prince, 2012, Chapter
11.8.4]. In each way, segmentation extends the problem definition of simple object
detection by providing a solution for each pixel in the input. Generally, segmentation in
medical images refers to isolating pixels or voxels that satisfy a predetermined criterion
(homogenity, contour, etc.).

Multiple segmentation strategies have been proposed [Prince, 2012; Van der Walt et al.,
2014]. Contour based approaches estimate boundaries in the image based on force
computation that can handle data without GT available. They are generally known for
outputting smooth segmentations. Known models are active contour segmentation based
on snakes, chan vese and well as morphological enhancements for increased computational
performance [Chan and Vese, 1999; Kass et al., 1988; Márquez-Neila et al., 2014]. When
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Figure 3.3: Top 5 Accuracy on the ImageNet Dataset. A high increase is observed after
the introduction of AlexNet in 2013, going beyond traditional low-level feature detection
(SIFT) [ima, 2022]

segmentation is defined as an unsupervised machine learning setting without GT available,
clustering methods like K-means or hierarchical clustering (see Section 3.4.4) can be
leveraged that provide per-pixel classification [Pham et al., 2000].
Making use of standard classification models in a supervised learning setting with GT
available for training, defines another per-pixel classification method that is often preceded
by feature extraction techniques. This also included earlier versions of neural networks
that have been used in state-of-the-art applications for segmentation now, as described
in the upcoming section.

One particular problem in image segmentation in the medical context is the availability
and generation of labelled data [Ronneberger et al., 2015]. While ordinary people are
able to create labelled ground truth segmentation masks of, again for instance a cat in a
picture, labelling organs in medical images is not trivial and asks for the input of medical
domain experts or radiologists in that particular case. This makes labelling non-trivial,
error-prone and time expensive.

3.2.2 Deep Learning

Until 2012, the best performing applications for automatic image processing were based
on techniques that leveraged on low-level feature extraction as described in Section 3.2.1.
Only marginal improvements were being achieved over time [Girshick et al., 2014]. The
proposal of neural networks for computer vision tasks significantly improved results in
the are, as depicted in Figure 3.3 for the ImageNet classification dataset. Since then, the
top performing algorithms on open access datasets have been built on the basis of deep
learning, specifically convolutional neural networks (CNN, Section 3.2.2).

Deep learning networks aim to not only abstract from low-level features previously
extracted manually, or learning from pre-defined features, but learn those representations
by itself. This is called representation learning. Figure 3.4 illustrates the schematic
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Figure 3.4: Schematic differences between image processing techniques. Gray boxes
depict automated processes by a machine. Rule-based systems were created with domain
knowledge. Machine learning learns these rules based on extracted features. With
representation learning, the goal is to also learn feature extraction as well, while deep
learning enables learning of different feature layers. Illustration adapted from Bengio
[2015].

differences between the different approaches. They also stand out by being learnt
end-to-end, meaning no manual work is required once training is completed.

This section focuses on presenting the theoretical background of deep learning which
includes presenting theories about how those networks are trained, what they are built
on and how optimization works. Finally, state-of-the-art segmentation strategies are
presented.

Linear Model

The starting point for deep learning based networks is the simple linear model. In the
context of object classification in visual computing we start by defining a function that
maps inputs, e.g. the pixel values of an image, to some output, e.g. confidence scores for
each class. We thus define

f(xi, W, b) = Wxi + b (3.1)
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with xi as the input pixels of the image flattened to a one-dimensional vector, the weights
or parameter matrix W and the bias vector b. The shape of xi is defined by the image
dimensions, as Width × Height × Channels, so in an 24 × 24 with 3 color channels one
would deal with 24 × 24 × 3 = 1728 inputs. The weight matrix W is of shape xT × c,
with c being the number of classes to be predicted, resulting in a row for each class
in the weight matrix. The bias vector b is added to the equation. The output of the
function is again a vector of length c, providing scores for each class, defined as vector
s for scores. By using the kernel or bias trick, b can be appended to W . As a result 1
has to be appended to the input vector xi, optimizing the equation [Goodfellow et al.,
2016, Section 5.7.2 ]. Based on this definition the weights and bias vector can be trained
end-to-end using a set of training images with the number of parameters to train defined
as Np = xi × c + c.

One can now stack many layers of this form next to each other to perform a chain of
functions, so that ȳi = f1(f2(f3(xi, θ3), θ2), θ1), with θ1 = W1b1 of layer 1, θn = Wnbn of
layer n, which are then called deep networks. The layout of those networks is commonly
thought of as a oriented computational graph (compare Figure 3.6).

Defining Cost Functions

The outcome vector of the linear model si, defined as the solution of Equation 3.1 for an
image xi, defines the confidence scores of the model for each class c. In order to train
the model a loss function is defined that changes the weights in W , so that the equation
is optimal for a training set. Different loss functions can be used in order to train deep
learning networks, depending on the task definition. Most commonly used is the cross
entropy loss in combination with the softmax function classifier [Ronneberger et al., 2015;
Goodfellow et al., 2016].

The class scores of the model si may be arbitrarily high positive or negative numbers.
The softmax function is used to transform those scores to a probability distribution, so
that

i) gives a class confidence score between [0, 1] for each class,

ii) sums up all class confidence scores to 1

The softmax function has been formally defined as

softmax(s)i =
exp(si)�
j exp(sj)

(3.2)

for class probabilities si and other classes sj in C, with C being the set of classes c. The
weights of the network are now trained by minimizing the cross-entropy score. This
describes the attempt to model the empirical distribution of the true class labels in
a training dataset by the models score distributions. This is done by maximizing the
log-likelihood of the softmax linear models scores. The idea is to achieve a similar
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distribution of output scores from the input sample by minimizing the cross-entropy
score. The cross-entropy loss for weights and biases θ is defined as

L(θ) = H((ŷi, softmax(xi, θ)) (3.3)

Cost functions can be varied over implementations and enable networks to optimize over
arbitrarily many problem definitions (compare section 3.2.3).

Back-propagation

When a prediction ŷi over input xi is produced, we traverse the network in form of a
forward propagation. Training is done backwards by deriving information from the loss
function. This is called back-propagation. In order to train the weights of the network,
we compute the gradient of the cost function. For each sample i in the training dataset,
a forward propagation is performed to receive the prediction scores from the classifier in
form of vector si. The weights in each layer are adjusted backwards in order to decrease
the loss by recursively going back to earlier layers and computing the derivatives for each
neuron to connected neurons in previous layers. If this is done for each training sample
in the training set, the action that is performed is termed stochastic gradient descent
(SGD).

In practice, training samples are randomly shuffled and grouped into batches and the
weights are optimized over each batch. This increases computational performance and
the optimization is done in larger steps. The optimization is continued for all batches to
include all training samples, for one epoch. Multiple epochs are used, in which training
data is shuffled and randomly augmented by rotating, cropping and randomly masking
images to increase generalization and number of training data over a training set.

Multiple enhancements for the back-propagation algorithm have been proposed, which
are summarized by Goodfellow et al. Goodfellow et al. [2016, Chapter 8]. A learning
rate is introduced to adjust how fast the weights are adjusted over epochs, helping battle
overfitting and the vanishing or exploding gradients problem. Using momentum adaptively
increases the step size for steps oriented in the same direction over continuous training
batches. Most prominently ADAM is used here. Skip connections were introduced to
reduce the distance from the loss to earlier layers, fastening training speeds and making
them more robust (compare section 3.2.3).

Non-Linear Models

The previously described linear model can already do a reasonable job for linear classifi-
cation, but most problems are non-linear. How a linear model is unable to solve simple
non-linear problems can be observed when trying to model a XOR function [Goodfellow
et al., 2016, sec. 6.1]. In order to model non-linear phenomena we need further tools. To
solve non-linearity so called activation functions are used which are added to models in
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Figure 3.5: Most popular activation functions.

the form of additional layers that feed of previous layers weights. The most popular acti-
vation functions used today are shown in Figure 3.5. Models using non-linear activation
functions have been termed feed-forward Multi Layer Perceptrons (MLP) or feed-forward
neural networks. By definition, those networks flow is only one-directional, while multi
directional networks called Recurrent Neural Networks, prominently used in language
detection, can also have connections into previous layers [Goodfellow et al., 2016, sec.
10.6].

Convolutional Neural Networks

Training previously described models that try to learn representations using only one
layer might be possible in theory, but in practice it turns out that these so called shallow
networks are difficult to optimize [Bengio and Delalleau, 2011]. They tend to generalize
not very well, leading to overfitting models, unless presented with a huge amount of
training data. Additionally they are quite cost-intensive in terms of computational
resources, which delayed usage of neural networks until the late 2000’s, when computing
became more affordable and training became less expensive. Apart from that, learning
is still based on pixel values being used as input. When stacked to deeper networks,
MLP’s are designed as fully connected networks, connecting all layer outputs to all inputs
in the next layer. This radically increases the amount of parameters to be learnt in
deeper network and with that, the computational effort for training such deep networks.
Increasing input sizes of millions of pixels in high resolution images have the same effect
as the layers become very large.

Deep, convolutional neural networks (CNNs) were introduced to address issues from
traditional feed forward neural networks and provide ways to finally represent the possible
abstractions in order to learn high level features. They are commonly used on grid-like
data inputs like discrete time data and images. The name stems from the usage of
mathematical operations called convolutions. A convolution in deep learning describes
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Figure 3.6: Sparse and dense network connectivity [Goodfellow et al., 2016, Section
9.2]. Highlighted neurons in earlier layers influence highlighted neurons in later layers.
Connections are directed edges. A represents a Dense CNN, where the receptive field is
smaller than in the equivalent network displayed as a fully connected network (C). B

shows how the receptive field gets bigger over many convolutions in a dense CNN.

the method of sliding over the input with a constant window and performing a matrix
multiplication with a specific matrix, called a kernel.

Kernels allow the network to reduce the size of the original image or preceding layers onto
subsequent layers. By that, offering a way of extracting lower level spatial relations in an
image in earlier stages and become high level representations of image regions in deeper
layers of the network. Typically this is done in parallel with multiple kernels at once,
resulting in a number of so called feature maps per layer, with each ideally specialising
in different detections as depicted in Figure 3.7. Simply put, when comparing this to
traditional approaches in Section 3.2.1, we are now able to train feature extractors such
as edge detectors automatically. For each feature map a kernel is learned that is re-used
in that particular feature map, sharing its values throughout the map. This parameter
sharing is particularly useful as it reduces the number weights to be trained per layer
by a large margin, depending on the size of the feature map. Stacking this process into
multiple layers allows higher features to be detected by increasing the so called receptive
field of a neuron, as illustrated in Figure 3.6.

A side effect of the convolution is that without enhancements, they shrink the input by
k − 1, where k is the size of the k × k convolution. This is illustrated in Figure 3.6, as in
graph A and B, a 3 × 3 convolution results in one neuron in the subsequent layer. We
can control this by padding images, usually with zeros, which is then called zero-padding.
Padding a 2-D input by zeroes and using a 3 × 3 convolution results in the same output
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Figure 3.7: Illustration of the inner processes in a CNN. Multiple parallel feature maps
are trained in hidden layers on the input pixel values using convolutions. Earlier layers
specify lower level features while subsequent layers will gradually learn more high level
representations. Image from Goodfellow et al. [2016].

dimensions as the input. Without padding, network learning would be harder because we
either have to shrink the input quickly over consecutive layers in a CNN, or be limited to
using only small kernels in order to keep the shrinking size small.

However, the convolution is only the first of actually three steps of one layer in a
convolutional neural network [Goodfellow et al., 2016, chapter 9.3]. The outputs of the
convolution step are first run through a non-linear activation function as presented in
section 3.2.2, most commonly the rectified linear activation function (ReLU). This is done
via a sparse 1-to-1 mapping. This is followed by a pooling layer, which is implemented to
increase robustness of the learned features. Pooling is usually done with a sliding window
over the input. Common networks implement 2 × 2 max-pooling layers, which would
only choose the maximum value in a 2 × 2 pixel window. This increases the invariance to
specific data transformations, e.g. moving the original pixel values to the right by one
pixel would have no immediate effect since the maximum value should stay the same for
most of the pooling windows. As a side effect, it reduces the size of the signal. This
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Figure 3.8: Convolution of one feature map with 3x3 kernel, 1-padding of the input and
stride 2. The stride > 1 forces the feature map to be of smaller size, downsampling the
image implicitly. An activation function is used (ReLU) which sets negative values to
zero (compare Figure 3.5), which is followed by a 2x2 max pooling operation which again,
is reducing the feature maps dimensions. This is repeated in parallel many times to
create many feature maps with different kernels.

reduces runtime for subsequent layers while increasing the receptive field of the neurons
in the next convolutional layer. By increasing the pooling sizes, optimization is increased
as well but also a loss in detail is introduced to where exactly a certain feature has been
located in a picture when using bigger pooling layers. Pooling enables effectively working
with different sizes of images by consecutively reducing the images sizes, so that in the
end, a fixed number of representations for an image is reached which can be used by a
classifier (softmax) or as an input for other tasks shown in section 3.2.3. The process of
shrinking the input throughout the flow of the CNN is also called downsampling.

Downsampling can be fastened by using convolutional kernels with a stride s > 1, in
which we would jump over inputs. This implicitly combines the convolution and pooling
layers into one operation in a computationally more efficient way. A schematic illustration
of a convolution is given in Figure 3.8.

3.2.3 Solutions in Deep Learning

After presenting the foundations of visual computing using traditional low-level feature
extraction approaches as well as deep learning foundations, this section continues with
introducing the state-of-the-art solutions in regards to medical image segmentation.

U-Net

In 2015, Ronneberger et al. proposed the U-Net architecture for image segmentation,
winning multiple challenges [Ronneberger et al., 2015]. The approach was motivated by
reducing the high number of training images needed for training CNNs, which is often
not applicable in biomedical image processing. Previous approaches were deemed too
slow.

The U-Net embodies the idea of an encoder-decoder network. It first downsamples the
input using convolutions and non-linear functions to learn a small representation vector,
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from which it creates an output again. From the input space X, a smaller representation
C is learnt, which is then the basis for producing the output D of the network. This
approach is most commonly used in several natural language processing approaches
[Goodfellow et al., 2016, Section 10.2]. But the U-Net introduced an important difference
to regular encoder-decoder networks: it makes use of skip connections which enable direct
connections between the encoder and decoder parts, also illustrated in Figure 3.9. The
name ultimately stems from the designs layout: since the expanding right decoder part
of the network is also using multiple convolutions similar to the convolution side, it looks
like a "U" or sometimes also called "V". In general, since deeper networks generalize
better, deeper and deeper networks have been proposed, which take more effort to train in
respect to time and resources. This led to a common problem in optimizing the gradient
of deep neural networks, called the vanishing or exploding gradient. When networks
became too deep and the gradient was not transported back to earlier layers in some cases
[Glorot and Bengio, 2010]. Introducing skip connections allows the gradients flow to move
faster between parts of the network, speeding up optimization [Goodfellow et al., 2016,
Section 6.4.2]. This allowed the U-Net to train on a quicker and better on small train
sizes. Deeper networks like ResNet proposed later also heavily rely on skip connections to
improve learning speed and to deal with the vanishing gradient problem[He et al., 2016].

In order to generalize better and to increase the train size for the U-Net it was trained
using data augmentation. Since the U-Net was proposed for image segmentation, loss
optimization was adopted accordingly. The proposed softmax output and corresponding
cost function for the U-Net is represented in Equation 3.4:

pk(x) =
exp(ac(x))

�C
c′=1 exp(ac′(x)

; E =
�

xǫΩ

w(x)log(pl(x)(x)) (3.4)

The cost function is now computed over a 2-D matrix rather than a 1-D vector as seen in
Equation 3.2. The output of the U-Net is of form K × W × H for K ∈ 1, ..., k classes
in the dataset, referencing k different segmentation maps in one image. This is a good
example about how easily neural networks can be tweaked to perform reasonable well in
many different problem fields by adapting the cost function.

U-nets architecture has been enhanced and adapted to fit different problem statements
[Islam and Zhang, 2018; Isensee et al., 2021]. Isensee et al. developed the nnU-net, short
for "not-new U-Net", which is aimed to provide out-of-the-box implementations for various
problem definitions in medical image processing[Isensee et al., 2021]. Image processing
is still a field which yields best performances with (highly-)specialized applications and
non-experts may be overwhelmed by the terminology and complexity that accompanies
training neural networks. Islam and Zhang [2018] used the U-Net architecture for lung
segmentation in a transfer learning approach, which was also re-used in this work (Section
4.4.1).

25



3. Theoretical Background & Related Work

Figure 3.9: Originally proposed U-Net architecture by Ronneberger et al [Ronneberger
et al., 2015]. Horizontal grey connections are skip connections enabling faster learning
and combination of high and low level features in the expanding part of the network due
to copying feature maps from the convolutions in the decoder.

Transfer Learning

When a feed forward neural network is trained, the last layers preceding layers are
ultimately trained to create a latent representation of the input which is used by the last
layers classification step, i.e. a softmax classifier stated earlier. This representation can
be used in similar domains with related problem definitions. The process of transferring
this representation is called transfer learning [Goodfellow et al., 2016, Chapter 15].

In practice transfer learning has become very popular in computer vision. Networks
trained on large, open source, object detection datasets like CIFAR-10 or MNIST are
shared online and can be re-used and further enhanced (fine-tuned) for other tasks, or just
as a starting points with pre-trained model weights rather than random initialization in
fresh networks, downloadable online1 [Paszke et al., 2019] . In this work, transfer learning
is used for automated lung segmentation of chest X-ray images. In the particular case
of COVID-19, similar approaches have been implemented [Vidal et al., 2021; Zebin and
Rezvy, 2021]. Unfortunately, parts of the data have either not been shared [Vidal et al.,
2021] or model outcomes differ from this work [Zebin and Rezvy, 2021]. General lung

1https://pytorch.org/vision/master/models.html
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Figure 3.10: Examples of extracted radiomics features for necrotic lung-cancer in CT scan
images. Feature-maps have been color coded and used as an overlay for the gray-scale
CT scans. Slightly modified version adapted from Mayerhoefer et al. [2020].

segmentation works leaning on transfer learning are available though which are based on
open data [Islam and Zhang, 2018]. Islam and Zhang combine two open datasets, the
Montgomery County (MC) lung dataset as well as the Shenzhen dataset (SD) [Jaeger
et al., 2014]. Additionally, implementations for the approach of Islam and Zhang are
available online2 following the design of Iglovikov and Shvets [2018], making use of a
pre-trained VGG network as the starting point.

3.2.4 Radiomics

While the term radiomics is not finally defined, it generally describes the process of trying
to extract quantitative features from medical image data in a reproducible way [Mayer-
hoefer et al., 2020]. PyRadiomics3 is an open-source software library for reproducible
feature extraction in medical image data used most prominently in cancer research [van
Griethuysen et al., 2017]. It offers image loading, preprocessing and filtering techniques
which enables handling a variety of medical image inputs such as CT, PET (Positron Emis-
sion Tomography), MRI. Besides that, radiomics implements different feature extraction
classes using statistics, traditional feature extraction (Section 3.2.1) to extract common
features of medical image data, illustrated in Figure 3.11. Most features are computed
based on the Image biomarker Standardisation Initiative (IBSI) feature definitions, which
strive to define standardization through implementing feature extraction with baselines
and baseline datasets in order to achieve reproducible results [Zwanenburg et al., 2016].

2https://github.com/IlliaOvcharenko/lung-segmentation
3https://www.radiomics.io/pyradiomics.html
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Feature Class Description
Nr. of

Features

First Order Features

Describe voxel intensity distributions within
masked regions of interest through commonly
used metrics. Extracts numerical information
about the gray-values in the region of interest
(ROI), including Mean, Median or inter-quar-
tile range of pixel or voxel values in
the ROI.

19

Shape Descriptors
Available for 2D and 3D shapes. Computing
shapes in the original non-filtered images
through marching cubes algorithm.

10

Gray-Level
Co-Occurrence
Matrix (GLCM)

Texture based analysis computed over co-
occurring pixel values in the picture over
multiple rotations/axis.

24

Gray Level Run Length
Matrix (GLRLM)

Texture based analysis computed over run-
length of same gray-level picture values in
the picture.

16

Gray Level Size Zone
Matrix

Rotationally independent version of the
GLCM.

16

Neighbouring Gray Tone
Difference Matrix
(NGTDM)

Quantifies the difference between a pixels
or voxels gray value in contrast to their
neighbourhood, given a distance σ.

5

Gray Level Dependence
Matrix (GLDM)

Computes the dependency of a voxels gray
value to other gray values in an area given
a distance and threshold value.

14

Table 3.1: Overview of available features in PyRadiomics.

Currently implemented radiomics feature classes in PyRadiomics [Radiomics, 2022] are
presented in Table 3.1.

Figure 3.10 shows a visual representation of some of those extracted features. For now,
only gray-scale images are supported. Radiomics can be used interactively through
command line, in python or in the application 3D-Slicer where users are able to segment
images on the fly.

In order to derive features from input images, PyRadiomics needs segmentation masks in
addition to the original images. Segmentation is thought to have a considerable impact
on the performance of radiomics feature extraction [Mayerhoefer et al., 2020]. After
extraction, the features can be used to train classification or regression models to predict
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Figure 3.11: Feature extraction with PyRadiomics [van Griethuysen et al., 2017].

disease outcomes or to help in the decision making process for clinicians [Mayerhoefer
et al., 2020].

Radiomics features have been used in many publications regarding chest X-ray images as
of today [Tamal et al., 2021; Han et al., 2021; Chen et al., 2017]. An open question is still
how many features are to be extracted. Tamal et al. [2021] use 71 out of 100 radiomics
features in the context of COVID-19 classification in lung X-ray images. Segmentation
of X-rays was done manually by radiologists prior to feature extraction. Han et al.
[2021] use 102 radiomics features in combination with a CNN to train a contrastive
learning algorithm for pneumonia detection. Chen et al. [2017] give an overview of
multiple applications developed using radiomics feature extraction in the field of lung
cancer detection. Works range from using multiple radiomics runs with different settings,
resulting in the number of features typically lying in the hundreds. Redundant features
are often removed afterwards to a far lower number, with Pearson-correlation corr > 0.95
as a threshold used in some works. This methodology is in line with argumentation by
Mayerhoefer et al. [2020], as they point out the risk of overfitting due to the abundance
of features, with the number of features that could be extracted being unlimited [Lambin
et al., 2017]. This illustrates the idea of applications drifting apart in designs, so a
standardization has been given in form of a score by Lambin et al. [2017]. They also
stress out the importance of feature reduction (via Principal Component Analysis or
clustering) due to the fact that radiomics feature extraction can be used to receive an
unlimited amount of features which will most probably results in overfitting prediction
models.

3.3 Dealing with Clinical Data

Clinical data for medical analysis and machine learning tasks refer to patient data in
tabular form. Due to the high sensitivity of this data special treatment is advised. Thus
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the data has often been anonymized prior to sharing. Often data is missing, for which
imputation strategies are used. Popular strategies are presented here shortly. Clinical
data is typically the quantitative result of some sort of patient examination which can
quickly lead to high dimensional datasets (compare subsection 3.2.4). Therefore often
dimensionality reduction is used to enable quicker computation and easier analysis of
medical data. Here, Principal Component Analysis (PCA) and t-distributed Stochastic
Neighbourhood Embedding (t-SNE) is presented.

3.3.1 Missing Data Types

Missing data can occur in different forms, with the most used classification given by
Little and Rubin [2019] defining three types. Causes for missing data can be broad:
from data transmitting errors, generally unavailable data, unwillingness to proceed in a
survey, dropouts or death of a patient. The following types definitions are adapted from
Van Buuren [2018, chapter 1.2]

Missing Completely at Random

Missing completely at random (MCAR) describes missing data points that do not depend
on either observed data or missing data. There is no evidence of a systematic bias in data
as it is understood that they are part of a random sub sample of available data. One
can think of this case when sampling a random sub sample from an available population.
Each member of the population would, in theory, have the same probability of being in
the subset. In practice this is often an assumption difficult to fulfill and only used on
very big datasets. In the medical context, e.g. when a doctor does not record one specific
variable by accident on a random sub sample of patients, this would be MCAR.

Missing at Random

Missing data that can be traced or predicted based on the available data is termed
missing at random (MAR). If only members of a population are included in a dataset
given a certain known precondition, missing data in that dataset is then assumed to be
MAR. This is often the starting assumption. E.g. for a sub sample of patients with
a specific disease, like COVID-19, missing data for laboratory variables resulting from
thorough blood test might be the result of less severe disease progression.

Missing not at Random

If both MCAR and MAR is not sufficient for the missing data, it is defined as missing
not at random (MNAR) or not missing at random (NMAR). MNAR means having no
knowledge about why the data is missing. In public opinion research, this occurs when
people with weaker opinion respond less often. A prominent fix here is to gather more
data in the attempt to be able to reason why it is missing and define it as MAR, making
the missing data ignorable for an analysis standpoint again.
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Missing Data Implications on Analysis

The types of missing data have implications on how to deal with them, as from a probability
theory standpoint, it makes a difference on how different imputation strategies will work
with the type of missing data. Simple fixes like imputing with mean values theoretically
only make sense when used on MCAR, as we think of the missing data to be part of
the distribution that we sampled the available data from. If MCAR is not the case, this
would introduce bias ultimately shifting the distribution in the data affecting predictive
models built upon it. In general, MCAR and MAR are described as ignorable types of
missing data, where analysis can built upon, while MNAR is non-ignorable and needs
further clarification on why data is missing.

3.3.2 Imputation

Dealing with missing data is an important prerequisite in machine learning and data
analysis. Different methods exist, from removing missing data from the dataset completely,
to imputing or interpolating data. The fit of such methods depend on the type of the
missing data. In the following we give a glimpse overview of possible methods for data
imputation and their effect on different types of missing data.

Deletion

Deletion or list-wise deletion refers to excluding records with missing data. Although
it can be thoroughly wasteful in datasets with many missing variables, it is a common
approach when data is sufficient especially in the context of big data with millions of
records [Van Buuren, 2018, Section 1.3.1]. In the medical context though, data is often
sparse and precious, thus deletion might not always be a good option. The option is
also deemed not satisfactory for types of missing data which is not classified as MCAR,
introducing bias in the data otherwise. A general rule of thumb on when deletion might
be appropriate is not supported by the literature [Little and Rubin, 2019].

Mean or Median Imputation

Mean imputation uses the mean of available variables to fill in missing data for that
particular variable. As Van Buuren [2018, Section 1.3.3] states, this will underestimate
the variance of the variables distribution and as a result will introduce a divergence in
the distribution which also affects related attributes. For categorical values one can use
the mode instead. It should again be used cautiously as a quick fix in MCAR data with
a low number of missing values.

Last Observation Carried Forward

Last Observation Carried Forward (LOCF) is a simple imputation models that repeat
the last previously filled value for one missing or multiple missing records. This can be
especially handy for longitudinal or temporal datasets. As Van Buuren [2018, Section
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1.3.6] points out though, previous work has proved that it should be used with caution as
it is able to introduce some bias even when data is MCAR and that it should be generally
followed by another statistical method that distinguishes between the imputed and the
originally present data, which is often not done. In general it should only be used when
assumptions for using them are scientifically undermined.

Indicator Imputation

Indicator or Missing-Indicator imputation is describing the case when missing values are
replaced by a constant value [Van der Heijden et al., 2006; Van Buuren, 2018]. This
can be also be the mean, but it rather applies to imputation with zeroes [Van Buuren,
2018, Section 1.3.7]. It is a popular approach for dealing with health and epidemiological
data since records are of utter importance and the method allows to keep all records
in the dataset despite there being missing values. It is logical that, similar to mean or
median imputation, the method introduces some distributional bias to the data, thus
may severely bias predictors, even with MCAR and low numbers of missing data.

Regression Imputation

In regression imputation, a model is trained on the available data that is used to predict
imputation values. It yields unbiased estimates for MCAR data as well as for MAR
data when the model is trained on influencing variables for the missing data. Yet,
Van Buuren [2018] describes it as the most dangerous of all methods, as one wrongly
assumes the relations between the missing and explanatory variables may have been a
very good fit since the prediction results seem realistic. In fact, regression imputation
tends to artificially intensify observed relations in the data by increasing correlations
while underestimating variance [Little and Rubin, 2019]

Hot Deck

Hot deck imputation is achieved using records of similar shape as an input for replacing
missing values. Sometimes those values are chosen randomly, for instance in the traditional
hot deck imputation that was used when data was still stored on card decks and only data
that was available on that particular deck was used to impute missing values [Andridge
and Little, 2010]. It is commonly used as a robust and fast way to impute data as it
has the advantage that it does not need to be modelled in comparison to regression
imputation. But it is making implicit assumptions over the data the imputation is
computed through distance metrics. The method proved to produce consistent estimates
when data is MCAR, while for MAR it only holds for unbiased under certain conditions.
[Andridge and Little, 2010; Little and Rubin, 2019]

k-Nearest Neighbour

k-Nearest Neighbour (kNN) imputation is a special form of hot deck imputation. It takes
the k most similar records into account, creating an average for available variables for
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imputation. The method is also referred to as predictive mean matching [Van Buuren,
2018, Section 3.4]. Similarity is measured in form of a distance measures, by default the
euclidean distance. The averaging can be done in a weighted approach, by determining
the respective values importance by the distance to the record that will be imputed on. In
the literature, nearest neighbour imputation is arguably one of the most robust method
to use when imputing data, resulting in unbiased values proven in different experiments
for MCAR and MAR data [Jerez et al., 2010; Van Buuren, 2018; Andridge and Little,
2010]. Usage becomes dangerous for small sample sizes though and limitations are limited
to data values occurring in the dataset, with the method being unable to interpolate
beyond them by design.

Imputing Categorical Variables

Imputing categorical values becomes a more difficult task in comparison to numerical
values. Van Buuren [2018, Section 3.6] propose the use of multiple imputation, for
example by using logistic regression to train a imputation model based on the available
data. This is only feasible though when there is a high number data available. As a
rule of thumb they define ten records per feature. If the feature is non-binary and data
has to be one-hot encoded in order to follow a numerical representation, the available
data multiplies to ten times the number of unique values. Given that data might not
be distributed uniformly, this might introduce problems in datasets with a general low
number of records. In those cases Van Buuren [2018] proposes changing to more robust
methods like kNN or random-forest based estimators for imputation.

One additional effect when imputing categorical values, for example in binarized repre-
sentations, is that one can end up with non-realistic values. When using kNN imputation
you may end up with values in between the range [0, 1] for a binary case. For example if a
patient had a symptom or not, encoded as 0 for not having the symptom and 1 suffering
from it, kNN could come up with a value of 0.4 based on the nearest neighbours and the
weighting function (uniform, distance based). For cases like this, Ake [2005] weighs out
the pros and cons for the option of rounding values back to a realistic state. He argues
that in the earlier days, when data was shared via devices for analysis to a different user
group, one might indeed round the values to make the data look quite realistic and reduce
the probability for questions from a succeeding user group in the data analysis workflow.
In the case of providing the data it might still be a good idea to round those values, but
nowadays, when imputing the data, you follow up with an analysis task yourself, which
then makes interpretation of the imputed data non-necessary.

Univariate & Multivariate Missing data

Previous methods, with the exception of kNN imputation, are methods that focus on
univariate missing data imputation. Univariate missing data are defined as datasets that
have missing data in only one feature [Van Buuren, 2018, Chapter 3]. In practice though,
missing data often occurs in several variables, sometimes at once [Van Buuren, 2018,
Chapter 4].
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Multivariate missing data introduces several additional issues [Van Buuren, 2018, Section
4.2]. Missing data variables can have co-dependencies, where multiple missing variables
are highly correlated with one another. Often, data types are different. Some might
be categorical, others numerical or continuous, while others might be ordinal. There
might be some temporal structure through pre-existing ordering in the data that could be
important when dealing with the missing data. Some missing data might be introduced
due to censoring or data anonymisation, given an underlying connection which needs
to be protected between data variables. Multivariate imputation methods dealing with
this type of data are able to create unrealistic values, for instance negative values for
non-negative scales (weight).

Proposed literature shows that in case of multivariate data, best performances are achieved
when using more sophisticated machine learning strategies Yenduri and Iyengar [2007]
including kNN. Van Buuren [2018, Chapter 4] propose iterative imputation strategies. In
general multivariate imputation is not straightforward and method applicability does
depend on missing data patterns and data availability Van Buuren [2018, Chapter 4].

Summary

Imputation of missing data is a broad topic. Van Buuren [2018, Section 1.1] comes to
the conclusion that the problem is often not thoroughly tackled in research and thus
modern methods like multiple imputation are not fully utilized. Additionally missing
data is often not communicated well because historically missing data was deemed as a
sign of a weak study, leading to downplaying of the topic in multiple medical contexts.
Apart from the mentioned methods, additional and more complex statistical models have
been proposed in the literature, namely maximum likelihood or pattern mixture models
which are also able to deal with MNAR data more robustly, but are not presented here
in detail. Methods for statistical comparison of imputation models are available as well,
and different approaches have been evaluated in experiments.

Yenduri and Iyengar [2007] experiment with six real-world datasets and 13 imputation
strategies, including mean imputation, listwise deletion, ten different settings for hot-deck
imputation and maximum likelihood estimation. They conclude that listwise deletion
performs worst when the data is not MCAR and thus should be avoided. Best performing
methods include hot-deck imputation with more robust results using Manhattan distance
on datasets with MAR, amidst maximum likelihood approaches.

Jerez et al. [2010] compare different imputation models on breast cancer data, including
incomplete multivariate data (several missing variables at once). In addition to the
presented methods above they trained a two-layer MLP and Self-organisation map and
compared the differences for prediction accuracy of a cancer survival prognosis model.
They conclude that, with the exception of hot-deck imputation, the methods all increased
prediction accuracy. The highest increase was observed in MLP and kNN imputation.

Since the aim of this work is not focused on creating the best possible representation of
missing data but rather to acknowledge recent work in the field, those are not specified
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further as well. The performance on the missing data will be chosen by the best performing
one over the metrics of the models predicting the actual target defined later, and multiple
imputation methods will be available for comparison for the respective interested user
groups.

3.3.3 Dimensionality Reduction

Working with high dimensional, multivariate datasets as in this thesis introduces several
challenges for training models and data analysis. Dealing with high dimensional data has
even been termed as the curse of dimensionality, where analysts keep struggling with
highly dimensional data due to data becoming exponentially more sparse the higher the
dimensions get [Steinbach et al., 2004]. When clustering data, most methods rely on
distance or similarity measures which can get hindered by higher dimensional datasets.
Moreover, training models on high dimensional data can be complex. While models
handle dimensionality differently, having multiple highly correlated features can be a
computational waste while hindering performance and real-time visualization techniques
[Munzner, 2009]. Additionally, high number of variables makes data visualization espe-
cially hard. In order to enable users to get an overview of data, it has to be transformed to
a representation which can be understood in a common way by reducing dimensions to a
maximum of three in order to use non-complex 2D or 3D representations and embeddings.
By reducing dimensions, presentation performance can also be increased. Reducing
dimension can be done using feature selection, for instance by removing features that
have high correlation values with other features, or are a-priori known to have no impact
on the further analysis. In addition, dimensions can be reduced by projecting features
from higher dimension space to lower space by aggregating similar features with the
goal to loose as less information possible. Here, two approaches are presented, namely
principal component analysis (PCA) and t-SNE.

Principal Component Analysis

Principal Component Analysis (PCA) is a non-parametric method that enables projecting
data onto a lower dimensional data space [Shlens, 2014]. PCA is using singular value
decomposition (SVD) to project the original data to a new dimensional space, which
is created by maximizing the variance of the data projection capability of the new
dimensions. The generated dimensions are expressed as linear combinations of the
original feature space and are normalized, sorted descending by their eigenvalues. Those
linear combinations are called Principal Components. Earlier principal components
are by definition able to inherit a higher variance of the feature space, making them
more important than latter components. The principal components are found using the
following procedure:

i) First the data is centered around the origin. The first principal component is then
found by creating a line which is forced to go through the origin and gets rotated
so that the variance in X is maximized. This is done by maximizing the sum of
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Figure 3.12: Illustration of Principal Component Analysis for the MNIST hand-written
digits dataset in a scree-plot. The left plot shows the explained variance for the first 100
principal components, showing a massive decrease after the first 20 features in explained
variance. When the line is flattening out one might decide to stop and use those number
of components. This is a scree-plot. The right plot shows the cumulative sum of explained
variance ratios. One common (and the default in scikit-learn) is to use 95% of explained
ratio as a stopping criterion for the number of selected components. In this example,
given the maximum is the number of dimensions is 784, representing one dimension for
each pixel, 95% of the variance would be achieved after 150 principal components.

squared distances from all points to the line. The vector that represents the lines
slope is normalized and by estimating the linear combinations weights (SVD) the
features importances for that vectors direction can be expressed.

ii) next, another principal component is found which is again, going through the origin
and is orthogonal to the previous principal component(s). Again, it is rotated so
that the variance is maximized.

iii) this is continued until the previously defined number of PCs are found, a variance
threshold is met or the number of principal components is equal to the variables in
the dataset.

In practice, many stopping criteria have been proposed and are presented by Brown
[Brown, 2009]. Most prominent is a scree plot, indicating the most important PCs by
plotting the variances. Stopping at a certain number of cumulative explained variance is
another popular option, for instance when components are able to express ≈ 90% of the
variance. Both of those options are displayed in Figure 3.12 for a 10% subsample of the
MNIST dataset4.

t-SNE

t-SNE is another dimensionality reduction approach focusing on visualizing high di-
mensional data in a 2D or 3D space [Van der Maaten and Hinton, 2008]. It uses the

4http://yann.lecun.com/exdb/mnist/
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Stochastic Neighbourhood Embedding (SNE) algorithm [Hinton and Roweis, 2002]. The
idea in SNE is that the dataset is represented as a similarity matrix, inheriting pairwise
similarity scores of the data records. A low-dimensional matrix is learnt that represents
the high-dimensional similarity matrix. The idea here is that points from the same
cluster/region will have higher similarity scores. Using stochastic gradient descent with
momentum, the low-dimensional matrix is learnt iteratively. The neighbourhood of
the high-dimensional matrix is represented as conditional probabilities from a Gaussian
distribution with variance σ that depends on a hyper-parameter perplexity. Points that
are near to each other in the original space will have a higher probability of being a
neighbour. In the iterative process, when optimizing the matrix, points are moved
towards points that are more likely to be their neighbour, making the low-dimensional
matrix more similar to the higher-dimensional one. New gradients computed during
SGD can be thought of springs that pull similar points near to each other while pushing
non-similar ones from each other.
Now what t-SNE effectively does different to SNE is using a t-distribution rather than a
Gaussian which was proposed in the original SNE to overcome the crowding problem,
and additionally tweaking the cost function of the original SNE. Probabilities also get
scaled in order to make up for for differences in cluster densities.

A good value for perplexity is not learned per se, as authors propose to use different values
for visualization to get a feeling on how the reduction performs [Hinton and Roweis, 2002;
Wattenberg et al., 2016]. It is also worth noting that due to the SGD optimization and
its random initialization of gradients, consecutive runs on the same dataset with exact
same settings may yield different outputs, even if seeds are provided [Wattenberg et al.,
2016]. In practice t-SNE is slow on data having a very high number of dimensions. This
is often mitigated by using PCA prior to t-SNE.

Figure 3.13 shows a comparison between PCA and t-SNE in use on a 10% sample
of the MNIST dataset, which is a collection of hand-written digits in 28 × 28 pixel
representation, resulting in a 784-dimensional feature space. While in the space of the
two most-explaining principal components, a high overlap between the numbers is still
visible, t-SNE is doing a much better job at distributing the classes.

3.4 Data Science Foundations

This section briefly present data science foundations including data splitting for hyper
parameter tuning as well as effective use of the data. Moreover, metrics and predictors
used in the upcoming sections throughout the work are introduced shortly.

3.4.1 Data Splitting

When training a machine learning model to predict the outcome for a given set of input
variables, the ultimate goal besides achieving high accuracy in prediction is to create a
model that performs well on new, unseen data. This objective is termed generalization.
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Figure 3.13: PCA and t-SNE representation of a 10% sample of the MNIST dataset.
PCA is successfully distributing numbers that differ from one another, for example zeroes
and ones which should be clearly distributable in pixel-space as well. It does struggle
though with numbers that are more similar, hence eight and three. T-SNE is doing a
much better job in the case of MNIST, being able to more clearly separate the classes,
with similar ones being near each other or having overlapping boundaries, for example
four and nine.

Models that do not generalize well are models that overfit. Overfitting occurs when
models rather memorize training data instead of learning relationships between the input
and respective outputs, possibly perfectly embodying their output representation but
yielding low scores on unseen data. The trade-off between those goals is often referenced
as the bias and variance dilemma [Reitermanova et al., 2010; Hastie et al., 2009; Kohavi
et al., 1995; Grus, 2019, Chapter 11]

In the effort of detecting and avoiding overfitting a dataset D is randomly split into
different mutually disjoint subsets. Most commonly, it is split into three parts, training
X, test T and validation data V , where the size n of the splits is nX > nV ≥ nT . In
this setting, the training subset is used to train different model families with different
hyper-parameter settings which are tested against the test dataset. Common ways of
dividing the The validation dataset is never used during tuning and training of the model.
It is only used at the end of the process as a final estimator, testing generalization ability
of the final precition model. This procedure is also called hold-out cross validation model.
Often, the terms test and validation are exchanged, so that the test data is hold out
as a final estimator, while the validation data is used consecutively to estimate best
performing settings. In the context of this work, the first terminology is used. Hastie
et al. [2009, Section 7.2] loosely propose split sizes of 0.5/0.25/0.25 for a train, test,
validation split, which is flexible and should be chosen with the dataset in mind.

Due to the nature of splitting data only once, data variability is limited during the
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evaluation as the same training and test/validation set is used over all runs. K-Fold cross
validation improves the process in that regard. In k-Fold cross validation, data is split
into k equally sized portions. For each model evaluated, all splits are used once as a
testing dataset now. This improves variability since all records are now used at least
once as training and testing, so records with outliers are now guaranteed to be included
in both parts of the process. In addition to that, a third exclusive validation dataset is
not needed anymore, at the cost of increasing the computational effort, since each model
is now trained k-times which can be problematic when dealing with large datasets. In
the most extreme case, k is set to the number of records in the dataset n, which is then
called Leave-One-Out Cross-Validation (LOOCV). The test set is consisting of only one
record while remaining records are used for training. Metrics are finally averaged over
k-folds in order to estimate the best performing model and respective hyper-parameters.
Common values for k are 5 or 10 depending on the dataset [Hastie et al., 2009, Chapter
7.10].

While most often splitting is done randomly, in some cases this will introduce biases
towards majority classes, or at worst inability to train for less represented classes. In
this case, a stratified split is preferred, keeping class distributions equal among different
splits.

3.4.2 Model Performance Evaluation

There is a variety of possible methods to evaluate the performance for models trained
to solve different problems. In the following, metrics for image segmentation with and
without ground truth are proposed. Additionally clustering metrics for unsupervised
clustering are presented. Finally, we provide an overview of classification metrics.

Segmentation Metrics

Quantifying segmentation performance in a binary optimization setting is often done
using similarity metrics. Most popular metrics used are Dice or Jaccard similarity in
order to compare automatic segmentation to ground truth [Bertels et al., 2019]. Dice
and Jaccard are defined as shown in Equation 3.5 and Equation 3.6.

Dice(y, ŷ) :=
2|y ∩ ŷ|

|y| + |ŷ|
(3.5)

Jaccard(y, ŷ) :=
|y ∪ ŷ|

|y ∩ ŷ|
(3.6)

where y represents the GT and ŷ the prediction. As long as the ground truth y is available
similarity metrics can be used as performance metrics for classifiers. But in medical
image segmentation, the ground truth is often not available. Therefore, other approaches
are presented as well. Qian et al. compare segmentation evaluation without the ground
truth to unsupervised clustering and thus propose to use evaluation techniques proposed
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in that domain [Huang and Dom, 1995]. They do not really go into detail on how they
would approach this in a gray-scale image domain where pixel-domain differences are
more scarce given the lower feature dimensions. Using color histograms for instance
would not make sense to cluster pixels into different regions as they would be too weak
to distinguish regions of interest from one another. In general, limitations presented in
subsection 3.2.1 are applicable as well here.

Correia and Pereira [2002] propose metrics for evaluation of segmentation in video,
focusing either on metrics per object or the whole scene. This is done by estimating
how many objects are detected and how many are expected in a scene, averaging final
metrics over multiple frames. In the context of this thesis, one would expect to receive
two objects from a segmentation. But it would not make a big difference if we would have
more, given that the artifacts are cleaned in post-processing by removing smaller areas
in the picture. So a segmentation yielding many small artifacts around the edges of the
image will be removed and should not be penalized if the key aspect of the segmentation
is reasonably better (compare Figure 4.15 in Section 4.4.2).

Kohlberger et al. [2012] use 42 low-level image features extracted from the segmentation
mask and source image to predict errors. The proposed method assumes that for a
given dataset at least some GT segmentation is available. For those images, automatic
segmentation is used and a classifier is trained to predict the error between the automatic
segmentation and the actual ground truth segmentation. Subsequent observations without
GT can be segmented and the error can be predicted on new, unseen data. This has also
been implemented by Magg et al. [2021]. Nevertheless, the problem with this approach is
still that the authors defined the problem when evaluating segmentation for a dataset in
which one has at least some ground truth available that can be used for feature extraction
and a classifier can be trained on in the first place. This is not the case for the dataset
used in this thesis though. One possible way mitigate this issue would be to train the
error predictor on available data used to learn the transfer model, where GT is available.
The problem is though, that low-level feature extraction methods may be not very robust
towards the differences in the datasets. As it is shown in Figure 2.2, the images may
vary by a large margin, including artifacts, different angles and views and deviating in
contrast settings.

Valindria et al. [2017] proposed a different solution for the problem which they termed
Reverse Accuracy. After training a segmentation model, the model is used on unseen
data. The outcome of this segmentation is then used as the input to train a new model,
which is evaluated on the original training images for which GT is available. Using
obtained metrics, segmentation on new, previously unseen images can now be flagged as
potentially good or poor. This approach could be used as in a slightly modified way as a
reverse transfer learning approach and would be feasible to use in this thesis given the
data.
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Performance Metrics for Unlabeled Data Clustering

When true labels are unknown and data characteristics that would suggest natural
clusters are not known a-priori, natural choices for clustering metrics are insufficient.
Here, two universal metrics are introduced to estimate clustering performance without
knowledge of the ground truth labels by focusing on the fitted clustering model itself.

Silhouette Score: The Silhouette score [Rousseeuw, 1987] is defined for each observation
in the dataset as the mean distance of the observation to all observations from the same
cluster a and the mean distance of the observation to all observations from the nearest
different cluster b. Formally it is defined as

si =
bi − ai

max(ai, bi)
(3.7)

The overall score is then averaged over all records in the dataset. It ranges between [−1, 1],
with higher values indicating a perfect clustering, values near zero a undecided clustering,
while negative scores would indicate wrong clustering based on distance metrics.

Calinski-Harabasz Index: The Calinksi-Harabasz Index (CH) [Caliński and JA, 1974]
is a measure for clustering performance also known as Variance Ratio Criterion. It
describes the ratio between the sum of between-clusters dispersions and the within-cluster
dispersion for all clusters. Higher scores are awarded for dense and well separated clusters,
but in general the index can be continuously rising or falling for increasing number of
clusters. In that case it is likely that ideal clustering is not possible. Cluster scores should
thus be plotted and read like an inverse scree plot, not looking for the biggest decrease
but peak in CHI. The CHI s is mathematically defined as

s =
tr(Bk)

tr(Wk)
×

n − k

k − 1
(3.8)

with tr(Bk) defining the between group dispersion matrix, tr(WK) within-cluster disper-
sion, k number of clusters over a dataset with n observations. Dispersions are calculated
with cluster centroids distance to cluster points.

Prediction Metrics

Next, prediction metrics used to evaluate model fitness are briefly introduced, with focus
on classification metrics only. Most prominent metrics are calculated in respect to the
confusion matrix, as depicted in Figure 3.14, which sets predictions and true labels into
perspective. The default is a binary classification confusion matrix as seen here, but it
can also be used for multi-label classification settings. Among many others, the following
metrics derived from the confusion matrix are defined [Davis and Goadrich, 2006]:
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Figure 3.14: Typical illustration of a confusion matrix in a binary classification setting.

Precision =
TP

TP + FP
Recall =

TP

TP + FN

Accuracy =
TP + FN

TP + TN + FP + FN
F1 = 2 ∗

Precision ∗ Recall

Precision + Recall

where TP, FN, FP, TN = True Positive, False Negative, False Positive and True Negative
as defined by the confusion matrix in Figure 3.14.

The right choice of metrics for model evaluation really depends on the classification
use-case. For medical disease prediction the metric should be including false-negatives
and false positives, as individuals that are not infected with a disease for instance should
not be given unnecessary treatment [Lever, 2016]. With that in mind, Precision and
Accuracy are especially not that adept at doing so, with Precision not even bothering
about false predictions per definition. In general there is a trade-off between Precision
and Recall (or Sensitivity) in classification, as one ultimately is trying to optimize one
of the two. When a predictor is optimized towards reducing FN (increasing the recall)
it will most likely increase FP (reducing the precision). This is why aggregate metrics
like F1, defined as the harmonic mean between the Precision and Recall (Specificity) are
quite handy. Furthermore, another common metric in the medical domain is Specificity,
or the true negative rate which is defined as

Specificity =
TP

P
=

TP

TP + FN
(3.9)

More abstract derivations of the metrical score are Receiver Operator Characteristic
(ROC) curve [Provost et al., 1998] or Precision-Recall (PR) curve [Schütze et al., 2008].
Their goal is to give a visual overview of the model performances. ROC has been
proposed in order to increase transparency in binary classification by plotting the number
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of incorrectly classified negative examples in contrast to correctly positive examples. This
is plotted as a curve and the metric that is used in ROC is the area under that curve
(AUC). The PR curve has a similar representation form which plots the precision and
recall rates. As Davis and Goadrich [2006] point out, these curves are not redundant
but complementary as they both give singular perspectives into the performance of a
classifier.

In multi-class classification scenarios, most metrics can be used with several tweaks. For
ROC, one-vs-one (OvO) or one-vs-rest (OvR) can be used to convert the multi-class
problem into several binary problems [Bishop and Nasrabadi, 2006, Section 7.1.3]. In
OvO, pairwise combinations of the classes are created and the metric is are averaged
over all classes (uniformly weighted by default). In OvR, each class is predictions are
run against all other classes.
Precision, Recall, Accuracy and F1 are altered similarly. Multi-class gets treated as
several binary problems by averaging the original binary metrics. Macro averaging
computes the mean of all binary metrics with equal weights. Often though in multi-label
classification, there are large majority classes that make this approach infeasible. Micro
averaging is averaging the score on a per sample-class pair basis, handing less importance
to majority classes and more to low-presented ones.

3.4.3 Working with Imbalanced Data

In this work prediction tasks must be aligned with the general problem of unbalanced
data [Barandela et al., 2003]. The term unbalanced is used for datasets that tend
to have a highly skewed distribution of prediction targets. This is often the case in
applications where a classifier is to detect a rare but important case, for instance in
fraud detection, e-mail spam classification, or medical settings as in this thesis. In
general, Barandela et al. [2003] point out that the majority of applications dealing with
imbalanced data are solving this issue with one of three possible mitigations: assign
distinct costs to classification errors; resample the original data by oversampling the
minority class, or undersampling of the majority class; compensating for class imbalance
by internally biasing the discrimination-based process. In this work, we adopted the
first two approaches, namely by implementing balancing as well as different over- and
undersampling strategies. Discrimination-based processes are often implemented by using
auto-encoder neural networks to train a classifier focused on detecting outliers in a system
with many observations [Eavis and Japkowicz, 2000; Li et al., 2020b], where Li et al.
[2020b] propose such a system for COVID-19 detection with promising results. Due to
the scarceness of our data in terms of pure observations, we ultimately lack the amount of
data required to successfully train such a model and thus focus on the other approaches.

Balanced Weights

When training a classifier in general, a cost function is optimized. When doing so in a
balanced dataset by default, each observation is assigned the same weight in the training
phase. In imbalanced datasets or when dealing with outliers, one can manually adjust
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Figure 3.15: Balanced weights effect displayed with a SVM classifier and a binary
toy dataset. Larger points depict higher weighted observations, changing the decision
boundaries of the classifier.

those weights in order put more emphasis on the classifier on getting these higher weighted
observations predicted correctly. In multi-class imbalanced datasets, most often the sheer
number of observations is used to determine the weight applied to each observation. A
visual representation of this effect is shown in Figure 3.15 using a binary toy dataset.
One can see that higher weighted observations, encoded by point size, are affecting the
decision boundaries of the classifier towards those observations.

Undersampling

Undersampling describes the effort to choose a smaller sample of observations from
the majority classes in an effort to balance out prediction targets, ultimately creating
a balanced subset of the available dataset. This is often done randomly but more
sophisticated methods have been proposed to limit the amount of information lost due
to dropping a potentially high number of samples [Barandela et al., 2003]. This method
can often lead to harshly reduced datasets, especially when dealing with multi-label
classification datasets as the class with the lowest occurrences dictates the overall amount
of data used to train a classifier, potentially leading to a huge loss of information that
would be available.

Oversampling

In contrast to undersampling, oversampling replicates observations from minority classes
by replicating them [Barandela et al., 2003]. This approach does not add more information
to the classification system as only already known combinations of features are replicated.
Classifiers that are sensitive to high-volume datasets may be affected negatively in terms
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of training and classification time by adding more observations, but this can be neglected
here.

SMOTE

The Synthetic Minority Over-sampling Technique (SMOTE) is an extension to random
oversampling Chawla et al. [2002]. Each observation of the minority class that is to be
oversampled is used to create synthetic examples along the line segments joining a subset
of nearest neighbors. Most often a form of k-neighbors with k = 5 is used to reduce the
computational effort. For each synthetic observation’s features, a value is chosen using a
random weight between the lines of a chosen observation and its nearest neighbor (s).

While again, imbalanced learning and efforts to overcome problems when dealing with the
classification of unbalanced datasets is a wide field, we merely scratch the surface here
and follow best practices without focusing too much on the most sophisticated methods
available.

3.4.4 Clustering Methods

Figure 3.16: Clustering methods compared on toy datasets, illustrating different clustering
results for each respective method. Figure adapted from scikit-learn docs5.

5https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_compa

rison.html
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Clustering describes the attempt of clustering or grouping observations into groups
of observations. This is often done in the context of unsupervised learning where no
ground truth is available or when one wants to group observations into clusters of
observations that are similar [Rokach and Maimon, 2005]. The similarity of instances
is often described as a distance metric. Additionally, Goodfellow et al. [2016, Section
5.8] describes clustering as an attempt to create a representation that preserves as much
information about a dataset X as possible while keeping the representation simpler
or more accessible than X itself. Clustering is an important part of multiple scientific
disciplines where clusters represent different typologies of entities.

Different clustering methods can be grouped into different categories based on their
approaches [Rokach and Maimon, 2005]: Hierarchical methods, which connect instances
in either top-down or bottom-up fashion; partitioning methods, which relocate cluster
instances from on to another given some convergence function, starting with an initial
partitioning; and density based approaches, assuming points belonging to one cluster are
drawn from a specific probability distribution. For each of those categories, one method
is used in this thesis and explained here in more detail. Further methods exist but are
not used in this thesis to limit complexity.

Figure 3.16 shows the results of chosen methods on toy datasets, pointing out different
strengths and weaknesses of the respective algorithm.

K-Means

K-means is a simple representation learning algorithm that divides a training set x into
k different clusters [Goodfellow et al., 2016, Section 5.8.2]. It is a partitioning method.
The k-means algorithm starts by, often randomly, generating k-cluster centroids and
alternates between two steps until convergence:

1. label each observation as cluster i, where i is the cluster of the nearest centroid,
with i = k.

2. each centroid is updated to the mean of all training examples xi assigned to cluster
i.

This process is repeated and measured by decreasing an error function. Most often the
sum of squared distances is used [Rokach and Maimon, 2005].

K -means clustering is one of the most popular clustering methods due to its linear
complexity even with a high number of observations [Rokach and Maimon, 2005]. Short-
comings of the algorithm are the initial cluster centroid creation, which may have an
impact on the final results, as well as the algorithm’s sensitivity towards noisy data and
outliers. Hence the algorithm being most dependent on distance metrics, data must be of
scaled numerical type. Optimization towards cluster initiation most prominently has been
the proposed weighted approach by Arthur and Vassilvitskii [2006] called k-means++.
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Hierarchical Clustering

Hierarchical clustering is either done using a top-down or bottom-up approach. This
describes the starting point of the clustering. In agglomerative clustering, each object
initially represents one cluster. Those clusters are then merged until the desired number
of clusters may be obtained. In divisive hierarchical clustering, all observations are in
one cluster, which is divided until the desired number is reached. Merging or division is
performed using similarity or distance metrics which optimize some penalty criterion, for
instance, the sum of squared distances. A number of hierarchical clustering methods are
proposed that use different metrics [Rokach and Maimon, 2005].

In this work, we focus on Ward-hierarchical clustering which is considered as an average-
linking clustering strategy — or minimum variance method. It considers the distance
between two clusters to be equal to the average distance of points in the respective
clusters. When compared to single-linkage or complete-linkage methods, which define
cluster distances by the nearest or farthest neighbors of respective clusters, average-linking
provides a more robust solution by taking all points into account [Yim and Ramdeen,
2015].

Density-Based Spatial Clustering of Applications with Noise

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a density-
based method that assumes the data is drawn from a mixture of several probability
distributions [Rokach and Maimon, 2005]. Clusters are formed by growing them until the
density of observations in a given radius, or neighborhood, exceeds a certain threshold.
DBSCAN enables the clustering of arbitrary shapes in an efficient way for large spatial
databases.

In contrast to hierarchical and the k-means clustering method, DBSCAN uses two
variables to cluster available data which does not restrict results to a pre-defined number
of clusters. The algorithm is illustrated by Schubert et al. [2017]. DBSCAN uses a
minimum number of points as well as a radius ǫ to analyze each point in a dataset.
Each point is considered a core point if it has a minimum of n neighbors in the radius
ǫ. This can be defined as a minimum density area that forms a cloud of points, which
can be considered a cluster. Each core point discovered is (recursively) joined by its
neighbors to form a cluster. There are also tuned implementations with only affect core
points themselves without recursively iterating through its neighbors, leading to improved
runtime. Non-core points that are reachable by other core points through this transitive
approach are defined as border points. Points that are not reachable are defined as
outliers or noise and are not considered to be part of any cluster but get assigned to a
cluster that is solely meant to inherit outliers.

3.4.5 Prediction Models

Supervised prediction models applied later on in this thesis are shortly described here.
In general, the idea was to use models of different families. Therefore, Random Forest,
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Logistic Regression, Support Vector Classifier, MLP and XGBoost were used in order to
have a comparison of different model types and their ability to fit on the dataset. The
multi-layer Perceptron (MLP) was already covered in Section 3.2.2 and is not mentioned
here again.

Random Forest

Random forest was introduced by Breiman [2001]. Random forest utilizes the training of
many decision tree classifiers in different settings. Many decision trees build a random
forest of trees which are used in an ensemble classifier where multiple classifiers vote
for a final classification label. This is done in an effort to combat overfitting which is a
major problem in decision trees.

Random forest starts with bootstrapping the original dataset by generating a random
subset of size n = N , with N being the number of observations of the original dataset,
by sampling with replacement. The number of distinct observations in the bootstrap
dataset is denoted as n1. The remaining observations n2 = N − n1 form the out of bag
dataset. Now when training the decision trees, only the bootstrap sample is used to
fit the tree first. Additionally, in each leaf, only a sample of all available p variables
is considered for each leaf split. After fitting the tree in this fashion, the out-of-bag
data is used to compute the tree impurity and feature importances for each variable p.
In classification settings, a majority decision is generated by using each trained tree to
classify new observations.

Support Vector Classifier

The Support Vector Classifier (SVC) terms the usage of Support Vector Machines (SVM)
for classification purposes. There is also a regression solution that is called Support
Vector Regression (SVR). Support vector machines in combination with traditional
feature extraction have been used heavily prior to deep learning [Goodfellow et al., 2016,
Section 5.7.2].

SVC first builds upon the assumption that a given problem is linearly separable. By
that, the algorithm aims to find an optimal, linear decision boundary by maximizing the
margin, where the margin is defined as the perpendicular distance between the decision
boundary and the closest data points. Those points are then called the support vectors
and observations not defined as support vectors may be moved, added or removed freely
in any dimension without changing the decision boundaries as long as they are not moved
inside the margins [Bishop and Nasrabadi, 2006]. The main key innovation used by SVM
is the use of the so-called kernel trick [Goodfellow et al., 2016, 5.7.2]. The linear decision
function can be re-written as

wT x + b = b +
m�

i=1

αxT x(i) (3.10)
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with x(i) being training examples and α a vector of coefficients. Now, x can be replaced
by the output of a kernel function φ(x), with only α being optimized [Goodfellow et al.,
2016, 5.7.2]. This kernel representation now allows for non-linear decision making, in
other words the original feature space is transformed to a new transformed space in
which a classifier is trained. Common kernels are Sigmoid, radial basis function (RBF)
or Gaussian.

Now in practice data is not always linearly separable. As a fix for that the margin is
softened, meaning it allows miss-classifications to happen by penalizing them to some
degree using a slack variable ξ, leading to a cost function as followed:

C
N�

n=1

ξn +
1

2
||w||2 (3.11)

The parameter C > 0 controls the slack variables penalty and the margin, with miss-
classifications on the wrong side of the decision boundary resulting in ξ > 1, correctly
classified observations in ξ = 0, with C → inf penalizing much, leading to a more simple
decision boundary.

Multi Class Problem: By default, the SVM is always a binary classifier. In more
complex problems, like in this thesis where multiple prediction targets exist, two common
approaches are available [Bishop and Nasrabadi, 2006, Section 7.1.3]. One way is to train
K = C classifiers, where C defines the number of classes available. For every classifier
trained, observations not labeled as the current class are considered negative examples.
This is often referred to as one-vs-rest (OvR). The downside of this approach is that each
classifier is now trained on different tasks, given the combination of different labels as
the negative ones. This also leads to the introduction of imbalance in many cases, even
when the data is balanced. For example, when 100 training samples are available for ten
classes, every classifier has to deal with a 9:1 imbalance now. Another idea would be to
train binary classifiers for each pair of classes available and combine those via a majority
vote. This is called one-vs-one (OvO). This leads to significantly more computational
effort, as instead of K, now K(K − 1)/2 classifiers are trained. Nonetheless, in the latter
stages of this thesis, the OvO approach was used.

Logistic Regression

Logistic regression builds upon the linear regression model by generalizing it to a
classification scenario [Goodfellow et al., 2016, Section 5.7.1]. Logistic regression inherently
uses probabilities to determine class affiliation, thus input variables are transformed
using the logistic sigmoid function, squashing outputs of each linear function defining
the classification process into values spanning from [0,1] interpreting those values as
probability. This leads to the following equation

p(y = 1|x; θ) = σ(θT x) (3.12)

with σ as the sigmoid function and θ defining the parametric vector that is to be optimized.
In a two-class classification setting, p(y = 0|x; θ) would just equal 1 − p(y = 1|x; θ).
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Parameters can be calculated maximizing the log-likelihood by minimizing the negative
log-likelihood, for instance using gradient descent and the cross entropy error [Goodfellow
et al., 2016; Bishop and Nasrabadi, 2006] (see Section 3.2.2 for more details). In multi-class
settings either several binary OvR models are trained or Multinomial logistic regression is
used, which details are not explained here in detail [Bishop and Nasrabadi, 2006, Section
4.3.4].

XGBoost

Extreme Gradient Boosting (XGBoost) is an ensemble method of the Gradient Boost
family originally proposed by Friedman [2001], which uses a simple classifier like decision
trees as the base classifier. These models build upon the iterative training of a base
classifier numerous times on previous errors. XGBoost combines this approach with
parallel computing, cache access patterns and more computational tweaks to improve
learning time and performance [Chen and Guestrin, 2016].

Trees are built using a gain parameter that decides the best split points and is controlled
via a regularization parameter λ. Tree sizes are limited by a complexity parameter,
γ. Consecutive trees are building upon the prediction of previous trees, namely their
residuals. This leads to stepwise optimization towards the ground truth. The consecutive
tree’s impact is again controlled using a learning rate parameter η to prevent overfitting.
Trees are being built until the residuals are small or a maximum number has been reached.

3.5 Visual Analytics

Visual analytics (VA) has been formally defined as "the science of analytical reasoning
facilitated by interactive visual interfaces" by Cook and Thomas [2005]. The authors
argue that, in order to fully capitalize on analytical processes, solutions for analysts need
to be created that enable them to make use of their cognitive and perceptual capabilities
during the analytical process. With exploding types (variety), volumes and velocities of
data and its accompanied desire for analytical processing and interpretation [Katal et al.,
2013], VA is a research area that combines many existing fields. It does so while trying
to build innovative solutions to help analysts and experts fulfill their analytical tasks by
providing interactive visual representations. While the amount of data we create and
the necessary hardware to store this data are evolving simultaneously, it also enables
us to conduct a more complete analysis. But we as humans are not as quick to evolve
and thus are limited in what we can process visually and conceptually (compare Section
3.2.1). Therefore, applications enabling analytical processes must deal with a number of
scalability issues [Cook and Thomas, 2005]: Information, Visual, Display, Human and
Software scalability.

Furthermore, Cook and Thomas [2005] define four core areas that are key parts of VA,
as they propose that research is done in those areas to increase the impact of VA:
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Figure 3.17: Visual analytics process by Keim et al. [2008], characterized by interaction
between data, visualization and models while users discover knowledge.

• Analytical Reasoning: support decision making, user insights and situation assess-
ment with respect to the scalability issues and that some analytical tasks may be
solved under extreme time pressure.

• Visual Representations and Interaction Techniques: Developing applications that
enable interactive use with visual representations fitting user groups.

• Data Representation and Transformation: Data preprocessing and unifying types
to enable comprehensive information overview.

• Production, Presentation and Dissemination: Results must be communicated to
different audiences, from policy-makers to the general population in unambiguous
and meaningful ways. Therefore flexible tools may be used that enable analysts to
produce reports and save created representations in order to communicate insights.

Keim et al. [2008] build upon the previously mentioned terminology by Cook and Thomas
[2005], generalizing their theories. Keim et al. [2008] think of VA as the intertwining
discipline between data analysis, visualization and interaction. By that, it not only
inherits known best practices and difficulties from those disciplines but also influences
back into those disciplines. Figure 3.17 displays the visual analytics process including data
preprocessing (transformation), mapping or encoding, model building and evaluation,
and knowledge extraction from that application by a user or user group. This process
can be replayed which enables faster or more accurate insights through feedback loops.

With machine learning and deep networks being so popular, the question might arise why
a human is even necessary for certain analytical tasks. Deep learning based solutions aim
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Figure 3.18: Design triangle as proposed by Miksch and Aigner [2014].

toward end-to-end pipelines, which deal with pre-processing and data transformation
by themselves by learning from huge datasets [Holzinger, 2018] (compare Section 3.2.2).
While in less sensitive contexts like high-frequency trading or facial recognition of the
mass it might be appropriate to deploy certain systems without humans in the loop. In
high sensitive contexts like the medical domain, where the decision process is not entirely
machine-translatable (Section 3.2.1) and systematic errors would be of high influence,
analytical tools to provide decision making including humans in the loop are necessary
to increase transparency and trust in algorithms. When legal aspects are added this
gets transparency and why a decision was made gets even more important. Thus, VA
applications should help enable humans fast pattern detection properties and leverage
on building efficient applications doing so. [Munzner, 2014; Ullman, 2000; Holzinger,
2018]. Furthermore, deep and machine learning is shifting from huge automatic black-box
models towards explainable AI (XAI), where focus is set on debugging, refining as well as
explaining decisions to humans using VA and interactive visualization [Holzinger, 2018;
Choo and Liu, 2018].

3.5.1 Visualisation Principles

When designing VA dashboards Miksch and Aigner [2014] propose the Design Triangle
shown in Figure 3.18. We already described data characteristics in Section 2.2 and will
describe requirement analysis and task definition in the upcoming Section, while users are
already described in Section 2.1.1. Still one thing to discuss here are the ground principle
of visualization that fill the triangle in Figure 3.18. One of the more important views
in this context have been introduced by Shneiderman [2003]. The Visual Information
Seeking Mantra that is:
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Figure 3.19: Multi-Level typology of abstract visualization tasks by Brehmer and Munzner,
adapted from [Brehmer and Munzner, 2013]. Task motivation why? is defined in a top-
down way, from high level definitions to detailed low level taxonomy (consume → search
→ query). Methodology on how the task is solved is defined in how?, while also defining
the tasks input and output in what?. Defining input and output allows for the definition
of subsequent paths.

Overview first, zoom and filter, then details on demand

The dashboards designed in this work later (Section 4.7) are focused on filling out that
exact mantra and key insights find itself in the typology used for requirement analysis
[Brehmer and Munzner, 2013]. Hence its still an important building block of todays
design principles of visualisation.

3.5.2 Requirement Analysis

Remembering the main idea behind VA is knowledge derivation, which can also be
referred to as solving an analytical task. This process can be widely defined [Brehmer
and Munzner, 2013; Munzner, 2014]. When does a task end, and when does a potentially
new one start? What is a user’s context or motivation behind using a VA application,
and what is the user’s background knowledge? In order to verify or evaluate the outcome
of visualizations and VA applications, tasks and user groups need to be defined in a
standardized way.

The mutli-level typology of abstract visualization design shown in Figure 3.19 proposes
a low-level typology which enables VA developers to define user-tasks [Brehmer and
Munzner, 2013]. The typology is designed via answering three simple questions defining
the "means and ends of a task". Why is the task performed, how is the task performed
and what are its inputs and – if available – outputs. This also allows for evaluation by
answering those questions after designing an application.
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Why: A top-down approach is proposed which helps describe why a task is performed
from high-level to low-level definitions. The first question to be answered is if the user is
trying to produce or consume visual artifacts. Producing can be introducing new data
transformations, annotating data, creating new visualizations or saving created ones for
exports. Consume is fulfilled when a user is either consuming information or seeking new
information-driven by an analytical task. When presenting data, the typology defines a
way of data-storytelling and guiding an audience. Discover terms the desire of a user
to generate or verify a hypothesis. If a user casually stumbles upon an application it
is termed as enjoy. The user then is not driven by some hypothesis but may want to
explore. This translates very well to a museum setting. To specify in more detail, the
medium-level term search is about how elements of interest are found in the visualization.
Therefore it distinguishes between previously known targets or locations. If a user is
for instance searching for targets with known characteristics this refers to browse and
explore. In contrast, if a user wants to find a specific item in a visualization, for instance,
a country on a map, and he does not know where this country lies, he must first locate
it. If he is familiar with the geographic aspects he can locate it. Lastly, a user can query
for a condensed portion of information after a successful search. Here, identify refers to
single targets, compare to multiple and summarize may refer to the whole dataset or a
set of possible targets.

How: Here the tools and functions a user can interact with are defined. In the majority
of visualizations, data has to be encoded somehow in order to grant quick information
gain. Encodings can be chosen between arranging data – for instance by connecting or
ordering data – and mapping data to color, shape or angles. A user can be enabled to
manipulate data for example by reducing items (select, filter, aggregate) or introducing
new artefacts.

What: The most important question might be should be the context of the visualization.
This is broadly defined and ranges from pixel to values or nodes and even clusters
[Brehmer and Munzner, 2013]. Here, an input needs to be defined for every task, and if
one is to model consecutive tasks, an output of some form has to be defined.

This taxonomy is used in Section 4.2 to define our user specific tasks.

3.5.3 Validation

Finally, when creating VA applications, some kind of validation is important. Many
applications are ineffective in what they try to achieve [Munzner, 2014, 2009; Cook and
Thomas, 2005]. In this thesis we will use the Nested Model by Munzner [2009] illustrated
in Figure 3.20. It consists of a four-level top-down design.

The first level is the domain problem characterization. This includes domain-specific
users and interests as well as their data and sets the overall setting of the solution.
Requirements are best met and validated by conducting user interviews with domain
experts or observing them to gain knowledge of current shortcomings and problems. The
threat is to ask the wrong questions, thus mischaracterizing the problem and making
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Figure 3.20: Nested Model for Visualization Design and Validation. Outer layers operate
as the input for the succeeding inner layer. Image from Munzner [2009].

wrong assumptions [Munzner, 2009, 2014] The second level is about the data. The
goal is to abstract domain-specific knowledge into generic representations. In particular,
domain-specific vocabulary is mapped to the vocabulary of information visualization.
This also includes transforming and preprocessing data into visualization-ready types and
forms. Threats like bad wrong operations or data types can be minimized by conducting
target user interviews. At the third level, the abstracted data is visually encoded. This
also includes how potential users may interact with the data given the chosen encodings.
Pitfalls at this level include ineffective encodings or visualizations – the user does not
understand it. VA design can be validated by conducting small lab studies or result
image analysis. Lastly, algorithms used by an application can be validated. This might
include consecutive rendering or encoding of data due to interaction techniques, which
may be slow and hinder user performance. Measuring time and making sure potential
constraints are met would suffice here. Also, the correctness of the algorithm should be
validated. In this thesis no potential constraints are defined regarding runtime other than
usability of the application should be interactive. Nielsen [1994] defines three response
time limits for applications that effect user experience and how to deal with them in
order of feedback provided by applications:

• 0.1 seconds: This is the limit for having the user feel that the system is reacting
instantaneously. No feedback is needed for the user.

• 1 second: The range of 0.2 to 1.0 seconds depicts the feeling of freely navigating
the data space. In this time-span, users have a feeling that the application is doing
work. Delays more than 1 second should be indicated by the application, f.e. by
changing mouse cursor.

• 10 seconds: Operations taking longer than 10 seconds should be indicated by
the application, and feedback should be provided in some form of a percent-done
feedback. Wait times like this risk losing the users attention.

In addition to the nested model, among others, Isenberg et al. [2013] observe usage
scenarios from visualization researchers as a possible way of validation. Here, a designer
or researcher mimics the target group and uses the visualization to prove its correctness.
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CHAPTER 4
Data Analytics

This chapter gives an overview of the design and the environment the practical implemen-
tation was done in, and documents findings along the way. Section 4.2 introduces task
and requirement analysis for the previously defined user groups following the abstract
visualization task design [Brehmer and Munzner, 2013]. In Section 4.1, data preprocessing
is compared and defined as it was used for most of the subsequent tasks. Clustering
of patients and comparison of different strategies for outcome prediction is conducted
in Section 4.3. Comparison of different transfer learning approaches, image pre, and
post-processing, radiomics feature extraction as well as comparison of prediction strategies
is presented in Section 4.4. In Section 4.5 we investigate how features can be combined
to possibly increase prediction performance. We formally define the environment used
in the thesis in Section 4.6. This includes a short presentation of possible front-end
environments and argues why one was chosen over other options. Finally, Section 4.7
provides an overview of possibrle ways to communicate results given the data by fulfilling
the previously defined tasks and requirements.

4.1 Data Preprocessing

For data preprocessing, target variables were transformed first. The three binary targets
depicting the outcome of the hospitalization, last.status; ICU admission is_icu and
ventilation status, was_ventilated, have been transformed from string to binary form
in order to be working with a numeric representation which is necessary for algorithms
to be fit towards target variables. From that, we created a numeric representation by
combining the outcomes for each patient, leading to eight target variables that defined
our multi-label classification setting. The targets and their corresponding encoding are
shown in Table 4.1. Original target columns have been removed before any subsequent
tasks. The very under-represented class 5 of Deceased + Ventilated patients was merged
into class seven.
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last.status is_icu was_ventilated Multi-label Description Count
0 0 0 0 Hospitalized (only) 948
0 0 1 1 Ventilated 11
0 1 1 2 ICU 46
0 1 0 3 ICU + Ventilated 100
1 0 0 4 Deceased 61
1 0 1 5 Deceased + Ventilated 2
1 1 0 6 Deceased + ICU 11

1 1 1 7
Deceased + ICU
+ Ventilated

100

Table 4.1: Multilabel targets and occurrences in the dataset

Many features are redundantly present in the raw dataset. Some variables are provided
in form of a numeric value. Additionally those variables are available in form of one-hot
encoded information, in the form of pre-defined ranges suitable for the respective variable.
For example, the Body Mass Index (BMI) was given in form of its numerical value, a
positive float, and additionally, two variables were present indicating BMI over 30 and
over 35. Those variables may be of use when creating manual decision processes but it
is not helpful when training a classifier and thus, these redundant features have been
removed. There have been 51 dropped columns of this form.

Duplicate columns are removed as well. This only affected one column in the dataset,
namely sodium values in serum or plasma, which was available twice in the tabular data.
Furthermore, prior to any imputation, features that were eligible for one-hot encoding
and filling missing values with zeros were determined manually. Those features are kidney
replacement therapy and kidney transplant which have been imputed with zeroes, because
besides missing values, only positive values were present in the binary variables. Other
variables, i.e. age, gender, Urine.protein,hf_ef_v (heart failure and ejection fraction) and
smoking status have been one-hot encoded, as they inherit different categorical values.

Additionally, for non-explorative tasks, targets and columns that could implicitly indicate
the outcome of any of the target variables are removed as well. As already mentioned in
Section 2.2, multiple variables correlate or indicate the outcome of a patient’s hospital
stay. For example, the number of ventilated days of a patient is a sign for ventilated
patients, and as there is a high co-occurrence between people being ventilated and being
submitted to ICU, there is also a high correlation to that target. A longer hospitalization
stay means there is a higher possibility of a severe case including ventilation or ICU stay.
Suffering a kidney injury during the hospitalization was also an indicator for a severe
case with a medium correlation factor. Those features were all removed. In addition to
that, all columns that would indicate something about the patient’s stay in the hospital
also were removed. Those included information about the patient receiving therapeutical
medicine, f.e. against thrombosis like heparin, which would — again — indicate a longer
hospitalization stay and implicitly lead to information leakage. After that, no features
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with strong correlation (corr > 0.95) to target variables remained in the dataset.

The state of the data is now at a point at which it would be possible to train a classifier.
Generally, features can be split into two groups now, as mentioned in Section 2.2. On
one hand, there are features that would be available prior to any patient arriving at
the hospital or a medical facility at all. This is data that consists of symptoms, prior
medical records with possible medical pre-conditions, and some basic features like oral
temperature. It would be possible for a layman to input those features into a front-end
application that could predict from those features alone. This feature set is comparable
to data used in previous works mentioned before [Dai et al., 2020; Li et al., 2020b]. These
features would be also fall under the definition of Clinical Endpoints defined by Strimbu
and Tavel [2010] and presented in Section 3.1.3.

Additionally, there is data available that stem from medical or laboratory tests. This
data would not be available to laymen users using such a prediction system by default.
We thus define that only data that would be available to interested layman users are
going to be worked into the dashboard design as possible inputs. Due to usability and
improved results shown in previous works Li et al. [2020b]; Zhao et al. [2020], it should
be possible to infer additional data from medical tests for a user as well. This could
be done by using clustering (see Section 1.2) or neighbor-based methods. In general,
temporal aspects of the data have not been used in prediction but only in an exploratory
context through visual analytics.

Sklearn’s StandardScaler was used to scale numerical variables by removing the mean
and scaling to unit variance prior to any prediction, clustering, or exploration scenarios,
when not documented otherwise, to eliminate any numerical problems due to differences
in the data dimensions.

4.1.1 Missing Data and Imputation Strategies

We define the data as being Missing at Random MAR, as it can be defined as a sample
of the population with a known precondition (Section 3.3.2. In our case, the precondition
is being a hospitalized patient with a positive PCR test for COVID-19.

When grouping records with missing data by label, one can argue that missing data is
occurring at a higher rate for patients with less severe cases, as shown in Table 4.2. This
makes sense when further investigating for what variables the missing data occurs: After
filling manually selected variables with zeros (compare Section 4.1), features that are
missing at most are blood_pH with Nmissing = 1060 and A1C with Nmissing = 875. BMI
information has been missing in Nmissing = 400 records.

When we group those high-missing features by target variable, one can observe similar
results that are shown in Table 4.3. A reason for the difference could be that it was not
necessary in some cases to conduct laboratory tests since the illness was not deemed too
dangerous and therefore the records are missing in the final dataset. Blood pH values
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label Outcome Incompl. Rows N per label Proportion

0 Hospitalized (only) 901 948 0.95
1 Ventilated 9 11 0.82
2 ICU 38 46 0.83
3 ICU + Vent 89 100 0.89
4 Deceased 51 61 0.84
5 Deceased + Ventilated 2 2 1.00
6 Deceased + ICU 9 11 0.82
7 Deceased + ICU + Ventilated 78 100 0.78

Table 4.2: Patient records with missing data by label.

label Outcome pH A1C BMI

0 Hospitalized (only) 0.95 0.74 0.33
1 Ventilated 0.36 0.73 0.27
2 ICU 0.63 0.46 0.24
3 ICU + Vent 0.37 0.53 0.25
4 Deceased 0.79 0.62 0.20
5 Deceased + Ventilated NaN 0.50 0.50
6 Deceased + ICU 0.09 0.55 0.18
7 Deceased + ICU + Ventilated 0.40 0.45 0.29

Table 4.3: Missing-ratio by label for variables with high occurring NA’s. PH and A1C
(measurement of blood sugar) values are results of blood tests. Non-standard pH blood
values can occur due to acute kidney or lung function problems.

deviating from the norm occur during acute kidney or lung-related diseases 1. Given
that COVID-19 is a respiratory disease and comparing this information to the labels in
Table 4.3, we can observe a lower proportion of missing values for Blood pH values in
patients records that have been ventilated or admitted to ICU.

Comparing Imputation Strategies

Different imputation strategies are compared in the context of clustering the data, which
have been mentioned in Section 3.3.2. Imputed data is explored and one method is
chosen as the best fit after quantitative and qualitative comparison. This method is then
also used prior to prediction (Section 4.3.2.

Figure 4.1 shows CH and Silhouette scores for Ward and K-means clustering. This time,
different imputation strategies have been applied to the dataset prior to clustering. We
can observe a reasonable improvement when using the indicator encoded as violet lines

1https://www.healthline.com/health/ph-of-blood#blood-p-h-test
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Figure 4.1: Comparing different imputation methods and their impact on clustering
metrics. Indicator method is abbreviated with mi and zero-imputation was used here.

in Figure 4.1. In this case, the indicator method was used by imputing zeroes. As a
runner-up, the metrics would suggest using kNN-imputation.

When having a detailed look at the impact of the different imputation strategies on the
dataset, we can observe numerous things. Figure 4.2 shows three features, one binary
feature indicating if the patient was experiencing vomiting, blood lymphocyte values,
and creatine kinase, an enzyme, for which high values can be an indication for several
health issues. As for iterative imputation, we observe an introduction of negative values
through all three features. None of those features benefit from this artificial distribution
as one cannot have a negative number of creatine kinase enzymes, lymphocytes or have
a negative indication for vomiting. We introduced unrealistic values which yields the
iterative imputation obsolete. The indicator method, that reported best metric scores in
Figure 4.1, introduces another common problem. It vastly influences the original feature
distribution towards zero, which can best be observed in lymphocytes. While the original
data seems to be distributed somewhat normally around 0.7, the indicator method
introduces another peak at zero. Comparable phenomena can be observed for creatine
kinase, where the distribution is now highly skewed towards zero. The same problems
occur for mean and median imputation. They do not keep the original distribution in
place but introduce new artificial peaks.

For kNN imputation we observe the most realistic imputations of the presented methods.
One disadvantage is the creation of in-between values for binary variables, hence vomiting
takes values between 0 and 1. As proposed in Section 3.3.2, rounding would be an
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Figure 4.2: Imputation methods impact on feature distributions in the dataset shown for
three example features, one binary and two numerical.

appropriate solution for this problem, but as Ake [2005] proposed, this might not be
necessary when the data is used for analysis straight away, and thus this option is waived.

Conclusion and Further Implications

Overall kNN-Imputation gives the best results for the dataset given the classification
metrics provided and the qualitative exploration of the imputed data. This is also on par
with results from previous research [Jerez et al., 2010; Yenduri and Iyengar, 2007]. We
thus use it as the basis for further analytical solutions built upon the imputed data such
as clustering and prediction of hospitalization outcome.

4.2 Task & Requirement Analysis

As explained in Section 3.5.2 we use the taxonomy for requirement definition by Brehmer
and Munzner [2013]. For each user group, multiple tasks are defined that have to be
solved by the visualization and thus define the design. The tasks are enumerated in the
following scheme: User Group Incremented Number. When defining the tasks we keep
in mind that our designs are not created in contact to any medical experts or general
user population test users. Therefore to stick to most agreed to design principles for
information visualization as well as the concepts described in Section 3.5
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4.2.1 Medical Experts

The first user group is medical experts. The goal is to provide an overview over the
available data as well as methods to search for patients with specific attributes, filter for
outcomes and give an overview over the disease progression during the hospitalization
where applicable. Progression overview is only achievable for patients for consecutive
observations during their hospitalization, namely patients with several CXR images
available, as medical data is only available for one point in time. Medical experts should
be able to use the application for lookup of similar patients in order to receive an
indication for their outcomes and retrieve a prediction for new patients CXR images,
which could be used as a tool for decision making support. Visual notation of the medical
experts tasks are found in Figure 4.3.

Figure 4.3: Abstract visualization task design for the medical experts in visual notation
as proposed by Brehmer and Munzner [2013].

Medical 1: Overview

Given the application is not designed to solve a specific problem that was defined a-priori,
for instance by conducting interviews with user groups [Sedlmair et al., 2012], the first
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goal is to provide an overview about the data available in case of a casual encounter. In
the multi-level typology this translates to enjoy. Targets of particular interest as well
their locations are unknown and shall be explored in the first step. In order to give the
user the possibility to dive deeper, different groups of patients should be highlighted in
order to enable comparison. This should be achieved by filtering, encoding and selection
of attributes of particular interest. The input data is the raw electronic health data that
may be aggregated to some degree to enable compact, comparable representations of the
data.

Medical 2: Lookup

After making itself familiar with the data, the user should be able to discover data
for patients with particular characteristics, for example a decease status, existing pre-
conditions or age. This might be the results of the previous task Medical 1 but it does
not need to be so necessarily. Users should be able to browse in order to identify a patient
of interest by selecting and filtering specific attributes. The input is again the raw data
in addition to aggregated views. The output can be one specific patient of interest that
can be selected to receive a visualization of the decease progression using the patients
CXR images.

Medical 3: Discover Patients Decease Progression

Given a patient of interest has been selected as the result of prior tasks, the progression
of the patients hospitalization stay should be shown in form of one patients CXR images
in ascending time order. The goal is to present the images with the possiblity to select
specific time points and navigate back and forth. The user is able to explore the patients
hospitalization development and compares different points.

Medical 4: Predict Outcome for new Patient based on CXR Image

The user should be able to produce a prediction for a patients hospitalization outcome,
as a best effort approach to support decision making. The prediction is based on the
available CXR data. An image can be imported and is processed by the application
similar to the data used as the prediction basis and produces a prediction for the outcome
based on this particular image. Predictions from the model are then encoded and shown
to the user.

4.2.2 Analytical Experts

Analytical experts are users with analytical background, including machine learning
engineers, data scientists or mathematicians. Interest in the data stem from their ability
to create predictive models. Analytical users should be familiar with many different
visualization types and prediction models proposed in Section 3.4 and are most interested
in seeing how hyperparameters affect models on the data at hand. In Figure 4.4, tasks
for the analytical experts user group are presented in visual notation.
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Figure 4.4: Abstract visualization task design for the user with analytical background in
visual notation as proposed by Brehmer and Munzner [2013].

Analytical 1: Overview

Again we start with an overview. Users landing on the application are first engaged to
enjoy the application. Therefore they should be enabled to explore the data in detail
to identify variables and patients of interest. Encoding data to simple structures in the
first step is crucial. From then, selection and filtering capabilities are used to enable
exploration of the data. The input is raw data in the first place.

Analytical 2: Discover Imputation Methods

After getting an overview, analysts will recognize many missing data variables in the
original dataset. Here, different imputation strategies should be implemented which can
be selected by the analyst. By changing them, different imputation settings are applied
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to the data. The input is again raw data which will be imputed and will be the basis
for the upcoming tasks, hence the connections to Analytical 2.2 and Analytical 3.1 in
Figure 4.4.

After changing, imputed data should be displayed in a way that lets analysts decide
which might be the best fitting method. Analysts discover imputation effects on the data
by exploring different models which are compared. Features will be affected differently so
analysts should be able to select features of interest, where we use encodings to display
the data in a informative way. This can be repeated numerous times.

Analytical 3: Discover Patient Clustering

Similar to the previous task, this is divided into two sub tasks. Again, first a clustering
strategy should be selectable with hyperparameters that can be changed. This produces
clustered data from the imputed data of task Analytical 2.

Next clustering outputs should be made comparable by encoding data and selecting
different views on the data. This will enable discovery as well as exploration of different
clustering methods.

Analytical 4: Discover Automatic Lung Segmentation

This task covers lung segmentation. Similar to the medical experts task, a CXR image
should be importable which lets an analyst explore the performance of the automatic
segmentation. Additionally analysts should be provided with options to influence the
segmentation in order to identify a best strategy by comparing methods. The input are
pre-trained models for lung segmentation as well as user provided images.

Analytical 5: Discover Radiomics Feature Extraction Results

The radiomics features extracted from the lung segmentaion data. Similar to the first
task an overview should be given which enables discovery and exploration of the features
to identify important features. This is done through encoding. The input here is solely
consisting of radiomics features.

Analytical 6: Prediction

Electronic health data cleaned in previous tasks shall be used to enable analysts to train
different prediction models in an interactive way [Sacha et al., 2017]. Again a user should
be able to explore different models and compare them, by selecting models and data as
well as changing hyperparameters. Results should be encoded in a way that comparison
is easy and straightforward.
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4.2.3 General Population

Tasks for the general population group should be solvable by layman users without
any specific background knowledge. This includes knowledge about data analysis and
task-specific visualization types, medical topics or COVID-19 related characteristics aside
from the information that could be received through public media coverage. Therefore
it is of greatest importance to reduce complexity for the user group and make use of
straightforward and easy-to-use embeddings and non-complex visualization types. Tasks
for the general population are displayed in visual notation in Figure 4.5.

General 1: Overview

The first task of the dashboard is to give users an overview of the data in form of groups
of patients and present it to them in a simplified way. The goal is to generate simple
encodings that enables users to easily distinguish between clusters formed via clustering
methods and understand differences between them without too much detail. Users
should be able to engage with one or more of the clusters presented due to demographic
attributes as well as life-style choices or medical pre-conditions that could be extracted
from the raw data.

General 2: Hospitalization Outcome Prediction

The second task should be designed in order to enable interactive discovery of the users.
Given users experiences after the presentative overview in the preceding Task, users
should now be able to explore how different inputs change the prediction of COVID-
19 hospitalization outcomes. In order to simplify this, only certain features should
be provided as input which distinguish the clusters of patients, including information
available to every possible user. Finally, users are able to influence prediction outcomes by
selecting and changing features interesting to them in an interactive way. Prediction results
generated from user inputs should be presented in a way that is easily understandable for
the users. This should enable comparison of outcomes and identifying important values
for the prediction. Simple encodings should be used that give a clear and transparent
picture of the prediction without demanding too much background knowledge.

4.3 Clinical Data

This section describes the process of working with the medical data records which are
of tabular form with the goal of clustering patient records into semantically reasonable
groups as well as predicting COVID-19 hospitalization outcomes by using clinical data.
Different clustering methods, as proposed in Section 3.4.4, are compared using metrics
discussed in Section 3.4.2. Furthermore, classification models presented in Section 3.4.5
were trained on the clinical data in addition to using strategies to deal with imbalanced
data.
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Figure 4.5: Abstract visualization task design for the general population.

4.3.1 Clustering

Before conducting any experiments, the data has been cleaned and pre-processed as
explained in detail in Section 4.1. The first method investigated is K-means clustering.
Starting with a distortions plot shown in Figure 4.6, which is showing the sum of squared
distances of each observation from their closest respective cluster center. We observe
that the development is not very satisfying. At best, one can already identify an optimal
value of k-clusters by using the elbow method. In this case, there is no real drop-off
available which already indicates that some kind of dimensionality reduction is necessary
before achieving a reasonable clustering solution.

Figure 4.6 provides the comparison for two K-means initialization implementations in
sklearn. One is K-means++ which is more stable here, while a random initialization of
cluster centers shows a less satisfying reduction in the target metric for larger k. Given
the random initialization of clusters can change the optimization by quite some margin,
the experiment was repeated 100 times and a 95-Confidence-Interval (CI) is shown. In
further experiments we thus prefer the K-means++ initialization.

Figure 4.7 shows Silhouette and CH metrics for different number of clusters in Ward
hierarchical clustering, K-means and DBSCAN. For DBSCAN, ǫ values smaller than
five did not yield more than two clusters. Silhouette scores for Ward and K-means
clustering did not yield very good results on the data, not increasing much higher than
0.1, indicating overlapping clusters in nearly all settings, even for higher k. This is only
supported by the linearly decreasing CH metric. For DBSCAN, we observe a desirable
peak for CH, as well as increasing scores in the Silhouette metric. The problem though
is that for the higher scoring solutions, only two clusters are generated by DBSCAN.
Keeping in mind that one is reserved for outliers solely, results are not conclusive.
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Figure 4.6: K-means distortions plot showing the sum of squared distances for each
observation for kǫ[2, 25]. The error band is a 95% Confidence Interval for 100 repetitions
with random initialization.

Figure 4.7: Clustering scores for the different methods with different number of k-clusters.
Numbers in the DBSCAN Silhouette plot indicate the number of clusters created for the
respective ǫ with minsamples = 10.
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Figure 4.8: PCA scree plot and cumulative sum of explained variances for the electronic
health data. The 95% explained variance is highlighted as the green dashed line.

Dimensionality Reduction

It becomes quite clear that some kind of dimensionality reduction is needed in order
to obtain better results for patient clustering which also supports a visual assessment
thereof. Figure 4.8 shows a scree plot with eigenvalues for each principal component of
a PCA, as well as the respective cumulative sum of explained variances. Based on the
results and the plot, and keeping in mind common ways of choosing the right value of
principal components (PCs) as proposed in Section 3.3.3, we arrive at different values
which we investigate:

• A 95% of variance is explained with 55 PCs;

• Kaisers stopping suggests including PCs with eigenvalues < 1, so 26 in this case;

• using the elbow method on the scree plot in Figure 4.8 leads to four PCs;

• using two PCs gives the possibility to plot in two-dimensions.

Those settings are used prior to clustering, leading to optimized results shown in Fig-
ure 4.9. It is obvious that a lower number of PCs leads to better scores overall since
the reduced number of dimensions leads to a reduced number of possible distances in
theory. Nonetheless, the differences are not that immense, but it becomes quite clear
that higher dimensionality results in lower metrics with this dataset. In a reduced
two-dimensional feature space, the best results are achieved over nearly all metrics and
classification methods. K-means is generally slightly better than ward clustering, but
cannot compete against DBSCAN for Silhouette scores. The issue is again, that DBSCAN
is only outperforming other methods with a very low setting for ǫ, resulting in a low
number of clusters.

Figure 4.10 shows the results for the best settings retrieved from the metrics of of
Figure 4.9. For K-means a k greater than three is indicated by the peak in the CH plot.
A larger value for k is only slightly decreasing the silhouette score. For Ward’s, CH again
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Figure 4.9: PCA metrics for different number of principal components. Number of
clusters resulting in DBSCAN settings are again plotted next to the respective setting in
the graph.

suggests selecting a k greater four. Metrics for DBSCAN again suggest results that will
consist of two clusters only, so ǫ = 0.75 is chosen which yields 4 clusters.

The results in Figure 4.10 show that DBSCAN is not a good fit for the underlying data.
Results for DBSCAN also indicate that, while the method is able to detect outliers from
the high-density space, those outliers tend not to have a semantically strong coherence.
Not all of the patients in the outer areas of the two-dimensional space are patients which
deceased. Due to the nature of DBSCAN being a density-oriented approach it is only
natural that it will select an optimal centroid in the middle of the clutter.

Ward and K-means solutions do not differ much in their results. It is clearly visible how
Ward clustering establishes smoother borders. Both methods identify a cluster in the
left bottom region of the plot (red in Ward’s solution, blue in K-means) which is mostly
made up of patients that did not have a mortal hospitalization stay but were dismissed.
Patients in the right upper space tend to be more probable to suffer a severe illness
during hospitalization.

When applying t-SNE we hope to gain another helpful visual representation that prioritizes
the local structure of the high-dimensional feature space. After testing different hyper-
parameter settings for t-SNE (compare Figure A.6), we end up with a representation
as depicted in Figure 4.11. K-means and Ward cluster affiliation is color encoded again.
They show a very similar outcome once more. Interestingly, one can identify some smaller
groups of patients at the bottom which mostly share the same outcome and cluster
membership.
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Figure 4.10: Clustering after two-dimensional PCA compared. Parameters for k and ǫ
used according to best metrics in Figure 4.9.

Figure 4.11: T-SNE visualization of the feature space with color coded cluster member-
ships for each respective method.

Conclusion and Further Implications

Given the results for CH and Silhouette scores, K-means seems to be a slightly better fit
than Ward hierarchical clustering. To finalize the clustering, an optimal number for k has
to be chosen. Repeating Silhouette scoring and plotting a scree plot for the within-cluster
sum of squared distances for K-means presented in Figure 4.12, we do not recognize an
obvious common choice. Given we aim to provide some choice for users and comparing
our results to other results in the literature k = 4 seems a better choice. As a reference,
Zhao et al. [2020] end up with six for ICU admission, and eight classes for risk for decease
in their risk score model. [Dai et al., 2020] classify into three groups in their proposed
risk score model.

4.3.2 Prediction

Again, we started with data preprocessing as described in Section 4.1. For imputation we
used kNN with nneighbors = 5. Imputations for categorical values have not been rounded.
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Figure 4.12: Choosing the best number of clusters k for K-means clustering. Silhouette
would argue for k = 2 but the difference for higher choices is not that big. The elbow
method would argue for k = 4.

We end up with 74 features after dropping irrelevant or highly numerical or semantically
correlated columns.

Classification Pipeline

Next, a classification pipeline is created. Different strategies for dealing with imbalanced
data are employed, namely using balanced weights where applicable, random oversampling,
random undersampling, and SMOTE.

Data were split into 70% train and 30% validation and were not imputed prior to splitting
to avoid information leakage. Training data was used within 8-fold cross-validation,
as stratified folding was limited to the lowest number of records for minority classes,
which was 8. LOOCV was not used in order to reduce computational effort. For each
fold, data was scaled first, imputed using kNN imputation with Nneighbors = 5, scaled
again to account for changes in the data distribution after imputation and used to
train five classifiers: Random Forest (n = 10, max_depth = 5, Logistic Regression
(max_iter = 250), SVM, XGB and MLP (max_iter = 500, lr = adaptive). This has
been repeated by using PCR (n ≈ 0.95var) prior to training the classifiers. Imputing
with kNN was the best option as shown in Section 4.1.1. Since kNN is distance based,
data variables have to be scaled before to asses different scales in different variables. It is
also necessary to scale data in numerically non-robust pipelines for instance when using
SVM or MLP. After imputation, the underlying data distributions might be manipulated.
Scaling after imputation mitigates those influences again.

We reused metrics proposed by other works to be able to compare our results directly
[Dai et al., 2020; Zhao et al., 2020; Li et al., 2020b]. In addition to Accuracy, Recall
and ROC–AUC (One vs. One) we added Balanced Accuracy. Accuracy is a non-optimal
metric for imbalanced datasets, not taking class weights into account and thus tending
to provide too optimistic results for classifiers that are biased towards the majority class.
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Balanced accuracy takes this into account. Results are documented in Figure 4.13.

The results paint a clear picture. Undersampling did not have a good effect overall.
Other undersampling strategies (Near-Miss) were tried here as well which did not lead to
improvements, so they are not documented here. Since ROC–AUC is also reported by
previous works, we follow that and choose the best classifier for that particular metric.
In general, a high ROC–AUC is a good in-between metric. A higher balanced-accuracy
score would indicate that we are most likely possible to get the classifier to predict the
underrepresented classes. This is especially true when we also look at the recall score,
that might be lower in that case, which would indicate less good performance in the
majority class. For instance, notice SVM-balanced weights and SVM without - they
have a comparable ROC–AUC score but they differ quite in balanced accuracy and
recall/accuracy, as those accuracy and recall score better when the majority class got
predicted better.

Summary

Overall, PCA only had a small positive impact on some of the results. The best classifier
overall was SVM with balanced class weights, which had the highest ROC–AUC tied
with XGBoost. SVM was superior though in balanced-accuracy and had a lower standard
deviation over the training folds. SVM was trained again with k-fold cross-validation
to tune for optimal hyper-parameters and is finally evaluated using the validation split.
The results are presented in detail in Section 5.1.2.

4.4 Medical Image Data

This section describes the process of working with the CXR data. First, we compare
different encoder-decoder networks in form of U-net derivations for automatic lung seg-
mentation by using transfer learning. We also compare different image preprocessing
steps and evaluate them qualitatively and quantitatively, using a reverse transfer learning
approach inspired by the reverse accuracy proposed by Valindria et al. [2017]. Auto-
matically segmented images are used to extract radiomics features using PyRadiomics.
Finally, multiple classifiers are trained similar to the clinical data approach presented in
Section 4.3.2. The whole process is visualized in Figure 4.14.

The temporal aspects of the data have been ignored for the prediction and thus, images
have been treated as individual data records rather than a series of records. Temporal
aspects are only used in the context of visual analytics and data exploration later.

4.4.1 Transfer Learning

In order to train a segmentation network from publicly available masked CXR images
including the lungs, the focus was set on finding and applying previously proposed
architectures in the context of transfer learning. As mentioned in Section 3.2.3, two
possible publications were found that are focused on transfer learning and have been
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Figure 4.13: Medical data prediction results for multiple metrics and pipelines. Confidence
interval (±) is given by standard deviation over cross validation folds. XGBoost classifier
implementation did not have a balanced-weights setting and has no results in this case.
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Figure 4.14: Visual representation of working with the medical image data.

used in the context of lung segmentation [Islam and Zhang, 2018; Iglovikov and Shvets,
2018]. TernausNet by Iglovikov and Shvets [2018] was originally designed for background
segmentation of car images but has been used for other applications like segmenting
lungs [Ovcharenko, 2019]. It can be initialized with a pre-trained network in a warm-start
scenario. The authors show that using a VGG11 model that was pre-trained on ImageNet
showed promising results. Islam and Zhang [2018] make use of the openly available
MC and SD datasets [Jaeger et al., 2014] to train a U-Net network specialized for lung
segmentation.

We trained five models based on the MC and SD data solely. Given that the dataset
used in this thesis is less clean than the data used for transfer learning, as it was taken
using mobile radiography systems with patients admitted to ICU (compare Figure 2.2),
we added additional rotational data augmentation during the training phase, with the
goal to make the model more robust. In addition, random cropping, zooming, and
shifting have been applied to the data during training to increase variance. We also
tried AdamW optimizer rather than the proposed Adam to see if it has any positive
implications. Additionally, an early stopping criterion has been implemented. Specific
model characteristics are found in Table 4.4 and their respective training process in form
of loss and metric curves can be found in the appendix (Figures A.1, A.2, A.3, A.4, A.5).

From the loss curves and metrics curves during training of the networks found in the
appendix, we observe multiple findings. Early stopping was a good tool to decrease
training time without hindering training quality. AdamW optimizer had a negative
impact on the training, resulting in a less stable optimization flow Figure A.2 of the loss.
Rotation augmentation had a serious impact on the validation metrics and the training
time for training on the TernaususNet design, hence Figure A.1 versus Figure A.4 for
instance.

4.4.2 Image Preprocessing

As shown in Figure 2.2, images from the training datasets differ in terms of style and
contrast from the ones in the SBU dataset. The datasets used for training the transfer
learning model are way cleaner. In order to make the available X-ray data more compatible
with the training data, some traditional image preprocessing techniques are applied. The
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Name Design Rotation Optimizer Early Stopping

Model A TernausNet VGG11 None Adam None
Model B TernausNet VGG11 +/- 30 AdamW 10%
Model C TernausNet VGG11 +/- 30 Adam 10%
Model D TernausNet VGG11 +/- 25 Adam 20%
Model E U-Net blueprint +/- 25 Adam 20%

Table 4.4: Deep learning models trained on Montgomery County and Shenzen Lung data
with various additions. TernaususNet architecture as proposed by Iglovikov and Shvets
[2018], U-Net architecture proposed by Islam and Zhang [2018].

resulting segmentation model should be able to ignore artifacts such as tubes and cables
that are present in the images.

Multiple approaches are documented in the literature on improving contrast in chest
X-ray images. Norval et al. [2019] measure different techniques prior to training a neural
network. They included contrast enhancement, histogram, and adaptive histogram
equalization in their work, besides region of interest selection, with the latter being the
best performing one for the purpose of training a network. Udeshani et al. [2011] use
median filtering prior to histogram equalization in order to enhance contrast. They also
continue with feature extraction techniques also used in PyRadiomics on the preprocessed
images, namely using GLCM (see Section 3.2.4).

Figure 4.15 shows three preprocessing strategies prior to segmenting and the respective
segmented outcome using transfer learning model A (Table 4.4). The results show
smoother edge detection around the lungs for adaptive histogram equalization, while
histogram equalization was not always able to detect two separate lungs, hence the results
for Sample 3. Most robust results towards handling cables and tubes are experienced on
adaptive histogram equalization as well. Compare Sample 4 in Figure 4.15 for example,
with multiple cables exiting the lung area. The segmented region is increased without
preprocessing of the image, and adaptive histogram equalization is able to reduce this
effect. But this also results in additional artifacts in some cases. Segmented masks are
thus cleaned from additional segmented regions using contour detection and only keeping
the two biggest regions. This reduces the impact of additionally segmented regions
outside of the lungs, as long as two different big regions are still recognized. This process
is explained in more detail in Section 4.4.5

Further enhancements were added to the adaptive histogram equalization which is
illustrated in Figure 4.16. Adding median and blur filtering before adaptive histogram
equalization furthermore increased robustness and reduced artifacts. Different hyper-
parameter settings were tried for the Gaussian blur, median filtering as well as the
adaptive histogram equalization from the skimage library [Van der Walt et al., 2014].
Experiments showed that the median filtering was approximately two times slower than
the gaussian blur filter without considerable improvements when tested on a small
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Figure 4.15: Using different image preprocessing techniques prior to segmentation: No
preprocessing, median filtering + histogram equalization, Gaussian blur + histogram
equalization, adaptive histogram equalization. Ideally the segmentation is not utterly
confused by cables as observed in sample 3 and 4, but is able to ignore the artifacts
without increasing the segmentation region. Additional smaller regions outside are
removed in a post-processing step, only keeping the two largest areas. Green indicates
segmentations.
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Figure 4.16: Different image preprocessing techniques continued. Tuning adaptive
histogram equalization by using local averaging methods. Green indicates segmentations.

sub-sample, therefore the Gaussian blur was deemed to be the better choice as the
segmentation is meant to be carried out in an interactive way where longer processing
speeds may influence user experience in a negative way [Munzner, 2009].

4.4.3 Model Evaluation - Qualitative

Finally, a model has to be chosen as the best-performing one given the available data.
Figure 4.17 shows results for the five models described in Table 4.4 without image
preprocessing. Using the AdamW optimizer did not have a high positive impact in this
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Figure 4.17: Comparison of segmentation results for models described in Table 4.4
without image preprocessing. Green indicates segmentations.

particular case [Loshchilov and Hutter, 2017]. The training loss was also observed to
be unstable, as documented in Figure A.2 in the appendix section. Rotations of ±25
degree had a more robust effect on the outcome of the segmentation (Model D, E) when
compared to ±30 (Model B, C). Model E arguably had the most problems separating
the lung from the neck (Sample 3) but was promising in other areas with smooth regions
for more clearly distinguishable samples (Sample 1+2).

Results after adding the previously proposed image processing techniques are shown in
Figure 4.18. Generally, all models are more robust when handling cable artifacts while
introducing increased issues separating the lung from the neck on one sample. Sample 3
gives a good overall feeling on how models would perform on the highly variable data.
Model B, C, and D are unable to reliably tolerate cable artifacts, while Model E tends to
include the neck area, which can also be seen in Sample 1. Model E and Model A record
the smoothest detection in general.

Repeating this qualitative assessment for all samples in the dataset would be too much
work and it is also already visible that there is no perfect solution at hand, ultimately
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Figure 4.18: Comparison of segmentation results for models described in Table 4.4 with
Gaussian blur and adaptive histogram equalization. Hyperparameters used: Gaussian blur
σ = 1, histogram equalization clippling_limit = 0.01. Green indicates segmentations.

leading to a trade-off at some point between robustness towards artifacts and keeping
the regions as small as possible. It is also worth noting here that, in order to achieve
reproducible results over multiple runs for the segmentation, it is of the highest importance
to use manual random seeds everywhere possible, most importantly for PyTorch, to make
results comparable over consecutive segmentations.

4.4.4 Model Evaluation - Quantitative

In order to make a well-founded decision about the performance of the numerous seg-
mentation models and preprocessing strategies employed, a quantitative assessment was
designed. Inspiration for the approach used in the thesis stem from the concept proposed
by Valindria et al. [2017] already described in section 3.4.2. While the reverse accuracy
they proposed is based on a model trained on only one sample that is presented to an
online-segmentation system, the data available in this thesis allows for the creation of
many reference segmentations to train a new model. Using parts of the original training
datasets MC and SD with ground truth available as a validation set, the usage of standard
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Figure 4.19: Model evaluation strategy inspired by Valindria et al. [Valindria et al.,
2017]. [1] MC and SD dataset is divided into train, test, and validation split. [2] Train
and test split are used to train multiple CNN models shown in Table 4.4. [3] Models
are used to generate segmentation masks for the SBU COVID-19 dataset. [4] Created
masks and raw images are used to train new networks, using the design from Model A.
[5] Remaining validation split from the original training data is used which was ignored
in the training process of the first bunch of models in [2]. Models from [4] are used to
create segmentation masks for the validation split, where ground truth data in form of
segmentation from human experts is available. [6] Since ground truth data is available
here, usage of standard metrics (Jaccard, Dice) is possible again.

metrics like Dice and Jaccard is enabled again. Figure 4.19 visualizes this process. We
use the term reverse transfer learning for this process.

Summary

The models deemed as most promising from qualitative assessment — models A and
E — were used with and without preprocessing (gaussian blur combined with adaptive
histogram equalization) to create segmentation masks for the SBU dataset. Based on
the masks and images from the SBU dataset, another CNN was trained. Only a random
subset of images from the SBU dataset was used due to the high amount of disk space
necessary to store multiple versions of all segmentations. Again data augmentations
such as cropping and rotation are used for training. The architecture chosen for this
approach was the TernausNet (Model A). Models have been validated on the validation
set (n = 141) that has been left out during the whole original transfer learning process.
Final results are presented in Section 5.1.3 in detail.

82



4.4. Medical Image Data

Figure 4.20: [1] Results from automatic segmentation which may include artifacts. [2]
Separate areas are detected using contour detection. [3] The two biggest areas are selected
and the center is calculated using the contour points coordinate information. The left
area is defining the right lung and vice versa.

4.4.5 Feature Extraction

In the next step, PyRadiomics is used to extract radiomics features (Section 3.2.4) from
the chest X-rays and their respective segmentation masks. First, the masks are cleaned,
removing additional obsolete segmented areas by the automatic segmentation. Contour
detection from skimage is used on binarized gray scale masks. The two biggest contours
are selected, based on the number of points defining the contours, where a higher number
indicates a bigger contour. Pixel-space point coordinates defining the outline of one
contour are averaged for simple estimation of the center location of the respective contour,
in order to associate if the area defines the right or left lung, where the left contour
determines the right lung and vice versa. This procedure is illustrated in Figure 4.20.
Combined images of the respective lungs are saved as well for quick visualization as
shown in Figure 4.21. Those results have also been used for the modified reverse accuracy
approach presented in Section 4.4.4.

Dealing with Multiple ROIs

Following mask creation, PyRadiomics can be used in several ways to extract features.
According to PyRadiomics developer guidelines, only one ROI should be used per
extraction run [van Griethuysen, 2020a,b]. While PyRadiomics is able to deal with masks
containing multiple labels in an image, in form of different organs, for instance, it only
extracts one label per run. When dealing with different organs and differently labeled
ROIs, it would make sense to use different runs for feature extraction since the organs
might appear different in the original image due to different tissues and thus, ultimately
influencing feature extraction. When using the same organ type though, in our case two
separate lungs, it is not completely clear how one should deal with this and there are
multiple possibilities now:

(i) Extract features for the left and the right lung in separate runs. Those extracted
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Figure 4.21: 1) Resized input X-ray image. 2) Automatically segmented image using
transfer learning. Potentially resulting in more than two areas, as shown in this example.
3+4) Right and left lung is separated from the mask as shown in Figure 4.20 5) Left
and right lung are combined to define the final mask. 6) Resized input X-ray with the
cleaned segmentation is blended on top.

features could be used to train a predictor for each lung instead of each patient’s
image. This would make the prediction and the presentation of the results more
complex.

(ii) Another way of handling this is extracting features per lung and stacking them
for each image, doubling the dimensionality. This would be in line with developer
guidelines and the prediction process would not be more complex.

(iii) Finally one can also run the feature extraction with the complete mask including
both lung masks. PyRadiomics does not throw any errors or warnings in this case
despite the guidelines. When testing this behavior on First Order features and
comparing it to the outcome of separate runs for each lung respectively, one could
identify somewhat of a weighted average being returned, depending on the size of the
ROI. This makes sense for First Order statistics, as they are only statistical features
such as the mean or median of gray-level pixel values in the mask. Repeating the
process for other feature classes relying more on the contextual information of one
region, such as shape features, one could not experience such simple effects.

In any case, there is no information in related papers on how this was dealt with when
working with this type of data [Tamal et al., 2021; Han et al., 2021]. For the sake of
completeness, we tried multiple ways. Results are improving from per-lung extraction, to
combined features and finally are best with stacked features. This is shown in Table 4.5.
Results were created using an SVM-classifier with a 70/30 train-test split without hyper-
parameter tuning. High correlated features (corr > 0.95) were removed. As it also makes
the most sense to stack features and complies with the developer guidelines we continue
with using the stacked approach going forward.
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Accuracy Balanced-Accuracy ROC-AUC Recall

Separated 0.399 0.292 0.723 0.399
Stacked 0.483 0.330 0.766 0.483

Combined 0.436 0.341 0.754 0.436

Table 4.5: Results for the different methods of extracting radiomics features.

4.4.6 Radiomics Feature Exploration

Radiomics feature extraction with stacked features for all feature classes used leads to a
total of 204 features with 102 for each lung. When comparing to the official docs and
previously mentioned feature classes available in Section 3.2.4, 104 features are available.
In fact, two are disabled by default as they are correlated with others. This is the case
for standard deviation (correlated to variance) in First-Order Statistics and spherical
disproportion (correlated to sphericity) in 2D-Shape [Radiomics, 2022].

Figure 4.22 displays the correlation between radiomics features before removing highly
correlated features. Feature classes are color-coded on the left and top borders. The
heat map is divided into four visible quadrants. The left-upper one depicts the features
for the left ROI in the mask, and the right-lower one depicts correlations for the right
ROI. Features classes can be grasped by strong correlations inside their feature class
making up smaller quadrants in the heat-map as well, indicated by the colors on the
top and the left side of the plot. Here, First Order as well as shape based features seem
to translate between the ROIs, yielding medium correlations. 2D-shape features seem
less correlated to other feature classes in general, whereas the latter classes are showing
intra-class correlations at a high degree, hence GLCM and GLRLM for instance.

4.4.7 Prediction using Radiomics Features

Highly correlated features that can be defined as redundant have been removed. This was
done using a threshold of corr > 0.95 as proposed by Chen et al. [2017]. Data were split
into train and validation sets. The training data split was used in 10-fold cross-validation,
as multiple pictures are available for patients, especially for those with worse disease
progression. The same classifiers and metrics were used as reported in Section 4.3.2.

In Figure 4.23 radiomics features correlation with clinical outcomes are displayed. Features
are sorted ascending in regards to a less severe case, the hospitalization stays without
ventilation, ICU admission or mortal outcome. Again, features negatively correlated with
a less severe disease progression are indicators for a severe progression in most cases.
Outcomes with lower N correlations are not that clearly visible, and also not clearly
distinguishable between the classes. Many negative and positive correlated features for a
less severe hospitalization share their correlation tendencies with ICU admissions.

Figure 4.24 reports the classifier performances on radiomics features. The best performing
classifier was again SVM with balanced weights as the imbalanced learn strategy. Random
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Figure 4.22: PyRadiomics features correlation heat map showing both ROIs of the images,
the left and the right lung. Feature classes are highlighted on the top and left side of the
map.

Figure 4.23: Radiomics features correlation heat map with hospitalization outcomes.
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Figure 4.24: Classifier performances on 10-fold cross-validation for radiomics features.

undersampling yielded the worst results again and thus is not shown in the figure. When
compared to results from medical data prediction (Figure 4.25, results are slightly worse.
Hyper-parameter tuning for SVM was done again using cross-validation. Final results
are presented in Section 5.1.3.

4.5 Combining Features

The most simple approach to combining features is to add the per-patient medical
health records to the extracted image data. For each feature set the same preprocessing
was used as before when handling the feature sets separately. For radiomics features,
high-correlated ones (cpearson > 0.95) were removed.

Data splitting is not as straightforward as before. Randomly dividing into separate
datasets as done for the previous prediction tasks is not feasible since it would lead to
information leakage. Medical data is present in the combined feature set several times for
patients with several images. If not prevented, patients will be present inside training and
test splits which will lead to information leakage, as the model most likely will remember
training records. This leads to overfitting models and therefore, instead of randomly
sampling from the complete dataset, the dataset has to be divided by patients instead.

To deal with that, we used a grouping K-Fold split instead, with one patient being

87



4. Data Analytics

Figure 4.25: Classifier performances after merging the feature sets.

one group. Folding is not done on a per row level but per patient. Again, a train and
validation split was created in a stratified way, keeping the target labels at the same
distribution. The train data was then split with Group K-Fold with k = 4.

Figure 4.25 shows the prediction results for classifiers on the test set. We observe a small
increase from the results for medical prediction reported in Figure 4.13 after merging
feature sets. Final results after Hyper-parameter tuning are presented in Section 5.1.3.

4.6 Environment

The implementation was mainly done in Python. For the deep learning part we used
PyTorch while utilizing CUDA on a NVIDIA GTX 1060Ti 6GB. For classifier training,
scikit-learn was used in addition to imbalanced-learn for working with imbalanced data.
For working with medical image data, we utilized pydicom and skimage in addition
to PyRadiomics. Random seeds are used in various libraries and implementations,
where algorithms are randomly initialized, for example as laid out in Sections 3.4.4
and 3.4.5. Random seeds were always set to 42 if not specified otherwise. A conda
environment dump containing the exact versions used is available online, for cross-
platform availability without any build-number constraints 2 and, for the sake of complete

2
No builds: https://gist.github.com/oStritze/c9c05767ba4f42712341740888cf7a81
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transparent documentation, also with build hashes where available 3.

A short overview of possible tools for the implementation of visual analytics solutions is
given next.

Data Driven Documents D3: D34 is an extremely flexible and open-source JavaScript
(JS) library. It is designed to modify and manipulate static images on the fly using
Scalable Vector Graphics (SVG) by using them in an embedded way in HyperText Markup
Language (HTML), styling them via Cascading Style Sheets (CSS). It is necessary to have
some backend server which can be a Python Flask or NodeJS server. Advantages are,
apart from its flexibility, the use of constantly manipulating SVG files which are flexibly
scaled and platform- or browser-independent. Disadvantages include data registration
and moving data from the back-end to front-end, computational limitations during
running workload via JS in the browser, and additional complexity that comes with the
huge landscape of opportunities given via the library. Interactivity is not provided by
default for visualization types. This leads to more flexible solutions while being more
work-intensive and complex.

Dash: Dash5 is a visualization platform that combines React with Plotly6. It is available
in multiple languages such as R, Python or Julia. By default, it is running on a self-
managed Flask backend server. It abstracts away many tasks that accrue when working
with D3 combined with a self-managed backend, such as data transportation between
front and backend. Plotly is used as the main visualization library in dash, which includes
a variety of interactive plots for different use-cases. Interactivity is defined by the library
and some customization options are available. Specialized optional packages are available
that provide visualization types for special research areas such as biological use-cases
(dash-bio). Library pre-defined HTML and CSS objects can be created in python itself,
including user-input widgets such as sliders or select-boxes. The python implementation
makes working with typical machine learning libraries, such as sklearn, straightforward.
Plotly already implements most common visualization best practices by default which
saves time when implementing visualizations for developers. As a downside, much of
the freedom that is available in D3 is missing, as visualization is limited to plot types
available in Plotly. Those can be customized to a high degree though. One also has
to deal with CSS and HTML-specific positioning and error handling when designing
dashboards.

Streamlit: Streamlit7 is another open-source library that is built on Typescript,
Javascript, CSS and Python. It lets developers create dashboards using pure Python
code without any HTML or CSS pre-knowledge. It naturally fits into the machine learn-
ing ecosystem, providing pre-defined interaction forms and wrappers for most popular
plotting libraries, such as Bokeh, Altair, or previously mentioned Plotly. It is built for

3https://gist.github.com/oStritze/6e0146d682c2880e1d4116d9dfe947f1
4www.d3js.org
5https://plotly.com/dash/
6https://plotly.com/
7www.streamlit.io
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interactive training, tuning, validation and exploring of datasets, not only in a tabular
form but also in video and images, rendering data on the fly in the browser. Interaction
in visualizations is provided by utilizing supported libraries (Plotly), as well as pre-
defined widgets including popular user input options (select boxes, sliders, ...). Custom
elements can also be created via HTML and CSS by using self-written components.
Cross-visualization data manipulation is not straightforward but can be established. It is
the least flexible and complex, but the most high-level and straightforward solution of
the libraries presented here.

Given the manifold of tasks that are to be done and their analytical background, we
choose streamlit as the front-end as it is the most natural way of working with the data
science libraries used in the backend. It exceeds in building simple, interactive dashboards
for just that without a steep learning curve. It also excels at handling image data in a
simple way which will be an important part when displaying segmentation results. Given
that it is also able to render Plotly charts, it was not seen as necessary to use dash. Since
interactive data handling and manipulation of underlying data is a big part of the design,
we also preferred streamlit over D3 given the simple python implementation.

4.7 Visual Analytics

In this section we will discuss how our visual analytics solution is designed and how design
choices are affected by the task and requirements defined in Section 4.2. We discuss
intermediate results as well as unused drafts while proposing alternative visualization
techniques. Final dashboard results are presented in Section 5.2 of Chapter 5.

4.7.1 Task Implications

Visual analytics design choices are influenced by the task design discussed in Section 4.2.
The general typology definition, as depicted in Figure 3.19, already indicates which parts
of the design are influenced by which parts of the typology. Visualization and interaction
techniques are influenced by “how” users are expected to use the visualization to achieve
predefined tasks. How those tasks are solved is roughly defined with “why”, pointing out
high and low level tasks that are to be solved by the visualization. The data that is to
be visualized is also already defined by “what”.

User groups tasks are designed roughly in the same order. We start with an overview in
all cases (Medical 1, Analytics 1, General 1 ), which is followed by more dedicated tasks
where dedicated designs are considered. Later on, designs may be shared again, hence
Medical 4 and Analytics 4 both focused on importing CXR images, or General 2 and
Medical 4 both designed around encoding prediction presentation.

Therefore, we will present our task designs ordered by the high level task that was to
be solved while focusing on specialities for each user group separately. We will argue
which visualization techniques may fit the desired tasks by also mentioning potential
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Figure 4.26: Parallel Coordinates plot for iris dataset.

alternatives, with respect to discussing why some alternatives might not be as suitable
as others.

Overview First

Medical experts require overview strategies to delve into the multivariate electronic health
data, while analysts demand interactive solutions to customize views which enable them
to identify features of high impact, also for high-volume radiomics features. Layman
users need a condensed, highly abstracted version to gain a quick overview, without too
much detail that might be otherwise confusing. This is fined in Section 4.2 as Medical 1
+ 2, Analytical 1 + 5 and General 1.

Interaction possibilities are key to enable selection and filtering (Medical 1+2, Analytical
1 ) which will make identifying outliers and patients of interest easier. Here the most
capable user group should be given a lot of freedom. Also they might be interested in a
more detailed view by providing options for zooming. For the general population, the
data should not be presented in its raw form to avoid too complex views which could
overburden potential users without medical or analytical knowledge.

The most common ways to gain an overview is to display data in form of scatterplots.
Sarikaya and Gleicher [2017] argue that its relative simplicity and flexibility enables
the scatterplot as an ideal sandbox for early information visualization. Furthermore,
scatterplots let users solve a number of high to low level tasks, including identification,
object location, comparison, exploration, search as well as characterization of distributions
and identifying correlations, many of which are defined in the respective task definitions
in Section 4.2. Scatterplots encode each observation as a point, often in a 2-D coordinate
system. Points can be furthermore encoded by color or shape to make differentiation
easier. On the contrary scatterplots are known to be prone to overfitting with many data
records leading to overlapping points which may be counted with interaction possibilities
such as brushing and zooming [Sarikaya and Gleicher, 2017].

Heatmaps are another common choice when visualizing connections in a dataset. They
have been used in many applications focusing on multivariate data analysis, especially
in high dimensional biological datasets used in medical research [Fernandez et al., 2017;
Metsalu and Vilo, 2015]. Heatmaps provide designers with the possibility to display
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Figure 4.27: An example of a heatmap, showing the data as tabular form and in the
heatmap representation, illustrating how color coding helps in detecting areas of interest.

non-reduced data. Thus they strive in representation of dense datasets as 2-D matrices,
such as correlation matrices, where correlation values can be encoded as colored tiles.
Since static images with high dimension datasets tend to be hard to grasp, it is useful
to design interactive versions allowing users to zoom, pan, search or select areas of
interest [Fernandez et al., 2017]. With that they fit the task requirements introduced in
Section 4.2 for Medical 1 and Analytical 1 + 5, including browse, compare, summarize
and locate, where brushing is known to further enhance those capabilities [Nusrat et al.,
2019]. Figure 4.27 shows an example of a heatmap, as well as the tabular data which is
the basis for the visualization.

Parallel coordinates [Inselberg, 1985] would be another popular option. In parallel
coordinates, features are aligned on the x-axis while for each feature an axis is created.
Each record in the dataset is then encoded as a line and is positioned according to its
numerical value on each feature axis. An example is shown in Figure 4.26 using a minimal
example for the iris dataset with three different classes. The classes can be color coded
additionally, so each record can be associated with its label. Already with the example
dataset in Figure 4.26, which only inherits 150 data records, overlapping can be noticed.
Thus, without interaction techniques such as brushing or linking, parallel coordinates are
deemed unable to successfully display a high amount of features [Heinrich and Weiskopf,
2013]. As the dataset considered for this tasks is consisting of hundreds of features
(130 for EHD, 200 for radiomics features) and records (1279), parallel coordinates is
not considered as an appropriate option here. Furthermore, the plot type is limited
by different data types that need to be mapped to a common data scale [Heinrich and
Weiskopf, 2013]. Also, parallel coordinate plots have a rather high learning curve and
thus are not always clear to people that have never seen or worked with them before, as
many different versions exist [Heinrich and Weiskopf, 2013].

For medical experts and analytical users we decided to keep the visualization design
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Figure 4.28: Radar plot for cluster comparison with mean features values per cluster.
Too many variables or clusters lead to overplotting.

simple and opted for scatterplots and heatmaps, visualization types that should be
well known to this user groups. This is once more not recommendable for the general
population though, as those users might be able to read a simple scatterplot but it will
not provide enough information to abstract enough data. It would not make much sense
to include detailed medical domain variables, like blood pH values or C-reactive protein
masses, which would be too specific for layman users. We instead chose to communicate
the information as concisely as possible. The overview for the general population is thus
done by communicating cluster differences, which is described in the next section.

Compare Clusters and Groups of Patients

Comparing clusters and groups of patients is a goal in tasks Medical 1 + 2, Analytics 3.2
and General 1, again with different foci on the outcome. User with medical background
are interested in groups of patients that are semantically considered groups by their
preconditions or disease outcome. Identification is focused on certain patients of interest.
Analytical users are interested in the comparison of clusters after unsupervised learning.
The question here is in which ways the clustering is affecting features and how those
clusters ultimately differ. For the general population, the clustering is done in the
background and should help them grasp differences between the groups of patients by
abstracting information in a way that makes understanding those differences fast and
easy.

Medical Experts: For medical experts, we did not design tasks that compare the
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different clusters formed by unsupervised learning methods. Instead, the focus is set on
grouping here done by manually selecting groups of patients with shared preconditions
or disease outcomes (Medical 1 + 2 ). This is done by providing tables of raw data
for interactive data exploration providing support for filtering of specific values and
preconditions in addition to using interactive possibilities on a scatterplot. By enabling
users to make simple queries with the use of input widgets. Individual patients are then
shown in a scatterplot encoded as points and colored by the patient’s outcome, with the
final results presented in Chapter 5.

Analytical Experts: Analytical experts have the ability to change the clustering process,
which asks for detailed aspects of information that need to be visualized. This is defined
in Analytics 3.2. Natural ways of presenting clusters on high dimensional (more than 3)
are already shown during Section 4.3.1, with dimensionality reduced scatterplots using
PCA or t-SNE. In addition to that, differences between features in the cluster can be
communicated. This is also related to displaying proportions, which is talked about in
the next Section.

One way of comparing data of this type is a radar or spider plot [Chambers et al., 1985],
which has been popular in the medical context [Saary, 2008]. A draft with boolean
features (ranging from [0, 1]) is shown in Figure 4.28. Features are aligned on a radial
axis using angles while values are encoded on the respective features axis. With too
many features the radar plot becomes too crowded and leads to overplotting, meaning
that elements in the plot are not recognizable anymore due to overlapping elements.
Additionally, for numerical features, values were very high and needed to be transformed
to logarithmic form. This lead to negative values, which is not something the radar plot
is designed to communicate and fails silently in highly crowded circumstances.

A more simple way of showing this information is a bar chart, which is one of the most
preferred visualization types for analysts [Spence and Lewandowsky, 1991]. Because of
the high number of features, to save space in one dimension, it makes sense to use a
stacked bar chart here. Rather than encoding bars next to each other, stacked bar charts
stack them on top of each other. This saves space with the cost of being less easy to read
in cases were different scales are used. The result is shown in Figure 4.29. Differences
between clusters are easier to grasp and can be done very quickly when compared to the
radar plot solution in Figure 4.28.

General Population: First, the users should be given an overview which is done for the
general population by giving insights to the different clusters of patients in the dataset. A
first draft is shown in Figure 4.30 which shows an approach on how to communicate the
hospitalization outcomes of each cluster using a jitter plot [Chambers et al., 1985; Trutschl
et al., 2003]. Jitter plots are a deviation of simple scatter plots that introduce small
deviations of points from the actual positions. This is especially useful for categorical
data or data that tends to overlap. Jittering makes points more readable, and thus,
the plot is easier to interpret allowing to better understand distributions in the dataset.
Still, when inspecting Figure 4.30, one can observe clutters and overlapping points for
less severe hospitalizations where more observations are present. Also we used a very
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Figure 4.29: Stacked bar chart for comparing clusters of patients with a high number of
variables.

Figure 4.30: Displaying hospitalization outcomes per cluster in a jitter plot.

detailed way to encode the x-axis which does not make good use of the space, hence some
variables like Deceased + Ventilated occurred at a low number or not at all for some
clusters.

In another effort shown in Figure 4.31 using jitter plots, to overcome unequal distributions
in the groups, we sampled 100 patients per group to reduce clutter and combined outcomes
in a more natural way. We used symbols (or glyphs) instead of points and colors to
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Figure 4.31: Displaying hospitalization outcomes per cluster in a jitter plot with 100
patients sampled per cluster, encoding markers with symbols instead of points.

encode the outcomes again. Unfortunately, the detailed symbols were introducing even
more overlapping objects given their size needs to be big enough to be readable, which
made the plot really hard to read. In addition it took a long time (+10s) to render, as
each glyph is drawn independently. A progressive approach would be used as a solution
to this, but we do not pursue glyph plots further due to the overplotting issue.

We finally chose to generate two dedicated plots in order to give the general population
a way to compare groups of patients. Therefore, we choose a scatterplot to display the
distribution of outcomes per group as well as creating an infographic that inherited most
important characteristics of the clusters defined by unsupervised clustering methods.
Infographics [Smiciklas, 2012] combine visualization with design principles. They are
particular useful to improve engagement and memorability while also being quick to
process [Harrison et al., 2015] and have been used for centuries to display complex datasets
in an understandable way. Figure 4.32 shows one of the most famous examples of an
infographic, the french army march in the Crimean war, combing multiple visualization
types in one graphic. The detailed results of our work are shown in Section 5.2.3.

Displaying Distributions

Displaying distributions of data is key for understanding the effects on data imputation
that is done by users with analytical backgrounds defined in tasks Analytical 2.1 + 2.2.

Data distributions may be visualized by scatterplots using raw or dimensionality reduced
data. Given that imputations are done on raw data as defined in Analytical 2.1, scat-
terplots will struggle when categorical data is displayed, resulting in overlapping points.
Jitter plots, as already defined before would be an option to enhance this but would most
probably not solve all issues.

Instead, the most common way to display distributions is to use a histogram [Pearson,
1895]. Histograms bin the data and encode the occurrences of records, termed frequencies,
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Figure 4.32: One of the most famous infographics by Charles Minard from 1861 [Tufte,
1985], showing the march of french army troops from Kaunas to Moscow and back. The
amount of living soldiers is displayed as orange and black bars being located on a abstract
map of the eastern european region, with highlighted cities and rivers on the way. The
bottom line plot shows temperatures during the winter causing massive death tolls.

in a vertical bar chart. The number of bins created is defined by a specific algorithm,
of which many can be chosen today. Histograms help understanding the distribution of
data on a per variable level. They are, if binning is chosen incorrectly, prone to miss out
on specific information as outliers could be missed by inclusion to high frequency bins
[Freedman and Diaconis, 1981].

Displaying Proportions and Percentages

Communicating model predictions for the different user groups is a way of displaying
proportions and percentages to a user, which is important for solving tasks Medical 4,
Analytical 6 and General 2. A very popular way of showing proportions is a pie chart,
where each proportion is mapped to a slice of a pie. This is a very controversial topic
in visualization. The effects of pie charts and their inaccuracies in certain settings have
been discussed widely [Siirtola, 2019; Spence and Lewandowsky, 1991]. Figure 4.33 shows
how pie charts struggle to display smaller differences, while simpler bar charts are able
to communicate them.

Despite their unpopularity in the academic context, pie charts are quite important
in business settings and thus present a promising technique for layman users [Kosara
and Skau, 2016]. Kosara and Skau [2016] show that arc length and area are the most
important parts, while also proving that donut charts are being as accurate as traditional
pie charts [Skau and Kosara, 2016]. With this in mind we chose pie donut charts for the
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Figure 4.33: Illustration of pie charts versus bar charts. The differences between the
lables become quite clear in the bar chart whereas are hard to grasp in a pie chart.
Modified from original [User:Schutz, 2007].

general population while using bar charts for medical experts and analytical users, as
shown in the final results in Section 5.2.

For analytical users Analytical 6, we provide a more detailed overview which is common
in machine learning by using tables in form of confusion matrices (Section 3.4.2). In
addition to that, for comparing the classification metrics, we used simple line plots with
color encodings for different metrics. They have the advantage of needing less space than
bar plots.

Segmentation and Disease Progression

Display of automatic image segmentation is important for medical experts as well as
users with analytical background. Tasks focusing on this data are Analytics 4 and
Medical 3, but with different foci set on the outcome of the analytical process. Medical
experts are more interested in the disease progression for successive images of a patient
while analytical experts or ML engineers are interested in the automatic segmentations
performance.

The easiest way to display segmentation of lungs is to encode the respective area in
the image with color, already shown in numerous examples in Chapter 4. Visualizing
the disease progression would be possible by displaying the progression in some form of
encoded visualization with features, in our case radiomics features, extracted from the
images. Those features are several hundred though and multivariate data of this volume
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Figure 4.34: Chernoff faces example from Chernoff [1973]. Features are mapped to facial
characteristics.

is hard to grasp alone, especially when thinking about visualizing trends or differences
between several time steps.

Possible visualization techniques that would be eligible for disease progression display
include chernoff faces or radar plots. Chernoff [Chernoff, 1973] faces are a way to represent
multivariate data of k ≤ 18 dimensions in form of cartoon faces, where each feature is
represented by facial characteristics, for instance mouth angle, size of eyes or cheeks
[Chernoff, 1973]. An example is shown in Figure 4.34. When visualizing a high number
of features chernoff faces might not be ideal, while they also require memorization (what
is the eye for example).

Thus we thought of something else, namely a carousel display. This is ultimately inspired
by the infamous carousel slide projector8 initially used to display slide photographs.
We expand this by showing not only one but five images, starting with the first image
available as a reference and enabling selection through a slider. The final design is
presented in Chapter 5.

4.7.2 Interaction & Interface

The main idea in the visualization design of this thesis is to follow known best practice
principles. First focus on overview was already mentioned by works of Shneiderman [2003].

8https://en.wikipedia.org/wiki/Carousel_slide_projector
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(a) Rectangular select (b) Zoomed in after selection and
mouse-hover tooltip

Figure 4.35: Plotly interaction shown on a heat map. The rectangular selection in (a)
gets zoomed in and shows the selected area in a higher resolution. Double-clicking resets
the view.

This follows the believes of Card [1999], where visualizations enable viewers to see objects
of primary interest presented in full detail, while showing the surrounding information.
This is defined as focus+context, where overview (context) and detailed information
(focus) work simultaneously within a visualization design, and where different levels
of information are shown in different circumstances. This can be established through
showing details on hovering over data objects for example.

Another important principle is linking and brushing [Becker and Cleveland, 1987]. While
many dedicated visualization techniques exist that have several pros and cons on different
types of datasets, the idea in linking and brushing is to combine different visualization
techniques to combine their pros and limit their cons [Keim, 2002]. It is done by encoding
information between different visualizations and following interactions by the user. This
is exceptionally useful in highly multivariate datasets, as in this thesis. Several tasks
have been following this idea, namely Medical 1 combining tables and scatterplots, or
Analytical 3, using multiple visualization types to give users insights into different detail
levels of information.

Visualizations are built using Plotly and Apache Echarts9. Both libraries by default
implement filtering, brushing, mouse hover tooltips and picture exports for all plots,
shown in Figure 4.35.

Streamlit has built in integration with Plotly which enhances interaction possibilities even
more. Streamlit by default implements many input widgets10. From buttons, checkboxes,
radio select buttons, sliders and camera inputs or file uploaders. In addition to that, most
widgets can be made more explainable by defining help areas within widget creation as
seen in Figure 4.36. This lets designers be more compact in what information is shown
at first glance. Every figure, picture or table element is also expandable to full screen as
depicted in Figure 4.37.

9echarts.apache.org/examples/en/index.html
10https://docs.streamlit.io/library/api-reference/widgets
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Figure 4.36: Illustration of the help signs that pop out on every ? symbol either on click
or mouse hover, explaining inputs in multiple locations throughout the whole application.

Figure 4.37: Illustration of full screen expansion which comes with every figure, image or
table element in streamlit, highlighted by the arrow.

Figure 4.38: Illustration of wait time indication in streamlit. In the top right corner a
running animation is displayed indicating the application is computing (A). In addition,
a temporary text field is displayed indicating which actual method is running at the very
moment (B). All succeeding visualizations are made semi-transparent which furthermore
indicates processing (C).

Wait times during computations in streamlit are indicated by several objects out of the
box, shown in Figure 4.38. For the time a computation runs, a running animation is
displayed in the top right corner (Figure 4.38A), a temporary textbox is shown which
displays the method that is computing at the moment (Figure 4.38B) and all succeeding
visualizations are made semi-transparent during the computation (Figure 4.38C). When
the computation is finished, the indications are removed again automatically.
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CHAPTER 5
Results and Evaluation

This chapter presents the results and evaluates them quantitatively and qualitatively
based on the proposed research question and following detailed implementation described
in Chapter 4.

First, quantitative evaluation is carried out in regards to the defined research questions
RQ1 and RQ2 defined in Section 1.2. This includes presenting and evaluating clustering
and prediction of COVID-19 outcomes based on the electronic health data available.
Furthermore, outcomes are predicted based on medical image data. We measure the
performance of automatic segmentation of CXR by applying a novel approach of transfer
learning back to a domain where GT segmentations are available. Different approaches on
how to deal with feature extraction in PyRadiomics are compared. Finally, we evaluate
merging the feature spaces. Results are then compared to previous publications.

Visual analytics results are evaluated qualitatively next using methods described in
Section 3.5.3. We conduct usage scenarios by mimicing user behaviour and proving
usability and task fulfilments for medical experts and analytical users as well as providing
case studies with N = 6 users for the general population, where users were asked to test
the application.

5.1 Quantitative Evaluation

Figure 5.1 shows Pearson’s correlation values for all features with the eight hospitalization
outcomes, sorted in ascending order for less severe cases in which patients have only been
hospitalized without dying, need for ventilation, or ICU admission. Variables with a
negative correlation with hospitalization outcome tend to have a higher correlation with
worse disease progression. Note that all values are in the range [−0.5, 0.5].

Highest negative correlation values for a less severe infection occur for C reactive protein
values. It is an indicator of an inflammatory disease, like open injury or infection. The
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Figure 5.2: Final K-means clustering in PCA and t-SNE dimensionality reduced repre-
sentation. Clear clutter of low risk patients are visible in the t-SNE representation at the
bottom.

respiratory rate measures the number of breaths, usually per minute. Proteinuria indicates
high numbers of protein in the urine. It is common in elderly patients with reduced
kidney functions. C-reactive protein has also been found as an important biomarker
for COVID-19 by previous works as reported in Section 3.1.3. Ponti et al. [2020] only
hypothesize that chronic kidney disease may be an influence towards severe cases. This
argument can be proven to some degree with the dataset available here, as patients with
kidney replacement therapy have a higher correlation towards a more severe case and
vice versa.

5.1.1 Clustering

The final clustering is displayed in Figure 5.2 for K-means with k = 4 clusters in PCA
and t-SNE representation. How patient outcomes are distributed between the clusters is
shown in Figure 5.3, with total values in Table 5.1. There are some major differences
between the clusters here in terms of outcome. Cluster 1 is almost solely consisting of
patients that did not decease. Cluster 2 is made up of patients that had a high chance
of having a mortal outcome during their hospital stay, with only a few of them getting
ventilation support. Cluster 3 is made up of a high number of hospitalized only patients
while it has the highest proportion of patients that got ventilated and got admitted to
ICU during their stay. Cluster 4 is mostly made up of patients that arguably had a high
chance for a serious progression of the disease during their stay, with a high number of
deceased or ventilated patients.

When testing for significant differences between the clusters in feature variables, we would
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Cluster 1 Cluster 2 Cluster 3 Cluster 4

Hospitalized (only) 462 164 269 53
ICU 10 12 15 9
Ventilated 4 2 5 0
ICU + Vent 11 12 59 18
Deceased 0 43 2 16
Deceased + ICU 0 4 1 6
Deceased + Ventilated 0 0 1 1
Deceased + ICU + Ventilated 3 17 26 54

N 490 378 254 157

Table 5.1: Outcome distribution per cluster.

Figure 5.3: Distributions of outcomes per cluster.

expect non-significant distributions between cluster 1 and cluster 3 as well as clusters 2
and 4 given the outcomes observed in Figure 5.3. Testing with Mann-Whitney U for each
variable (74) and each combination of clusters (6) we get significant differences for 355
out of 444 tests. 89 tests did not yield a significant difference. 21 of those are between
clusters 1 and 3. and 18 are between clusters 3 and 4. Between cluster 2 and 4, 15 tests
were not significantly different (Cluster 1 vs 4: 13; Cluster 1 vs. 2: 12; 2 vs. 3: 10). So
indeed clusters 1 and 3, as well as 2 and 4, are similar also based on the variables.

In Figure 5.4 each boolean variable is averaged for each respective cluster. Again, a
clear difference between clusters 1+3 and 2+4 can be distinguished. Clusters 1+3 are
consisting of younger patients. Together with cluster 4, they inherit patients that are
less likely to have heart failure as a pre-existing disease (hf_ef_no). Since this correlates
with smoking, they also have a higher proportion of self-reported never-smokers overall.
In general, there was no difference between the clusters for current smokers. Cluster 4
inherits most of the oldest patients, with only a marginal number in Cluster 1+3. Heavier
preconditions like coronary artery disease (cad), chronic kidney disease (ckd), chronic
obstructive pulmonary disease (copd) or malignancies are more often found in clusters
2 and 4. Diabetes (dm) is less likely to be found in cluster 1. Lighter symptoms like
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Figure 5.4: Mean values of boolean variables for each respective cluster.

coughing, fever or diarrhea are present in all groups. Kidney replacement therapy is
mostly found in patients of cluster 4.

Figure 5.5 shows averages for features of continuous numerical type. Values are shown in
log-transformed form. The differences here are not as easy to spot as before. If focus is
laid upon the higher correlated features for critical hospitalization outcome displayed in
Figure 5.1 some artifacts can still be spotted. For C reactive protein, cluster 1 shows the
lowest number on average, hence they are the least probable patients to suffer from a
serious hospitalization stay. For urea nitrogen values, cluster 2+4 show higher values as
the other consisting of more healthy patients.

We thus define the four clusters as the following groups:

• Cluster 1 — Healthy Young to Middle aged: Young to Medium age [18, 59];
Unlikely to have preconditions; Lowest decease rate; Shortest hospital stay on
average (median = 2.0 ± 5.0IQR); Arguably low rate of ventilation overall; More
female patients on average.

• Cluster 2 — Elderly High Risk: "Oldest Group" with medium to high age
[59, 74] − [59, 90]; Likely to have preconditions (Diabetes mellitus dm; Heart issues
htn, ht_ef ; Malignancies); Lowest Body Mass Index 28.1 ± 5.2std; Lowest rate
of never-smokers; Highest decease rate with many dying quickly (second lowest
hospital stay 7.0 ± 8.0IQR).
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5.1. Quantitative Evaluation

TPR-Sensitivity (recall) TNR-Specificity

Hospitalized 0.975 0.265
Ventilated 0.000 1.000
ICU 0.000 0.994
ICU + Ventilated 0.040 0.976
Deceased 0.067 0.997
Deceased + ICU 0.000 1.000
Deceased + ICU + Ventilated 0.423 0.983

Table 5.2: Per class Sensitivity and Specificity for the best performing classifier.

• Cluster 3 — Less Healthy Young to Middle aged: Also Young to Medium
aged, not significantly different to Cluster 1 but significantly more male patients;
Unlikely to have preconditions; Significantly larger hospital stay time 9.0±12.0IQR;
High chance of ICU admission and ventilation. Overall Cluster 3 is not significantly
different from Cluster 1 in 21/74 variables. They differ by having more male
patients while containing a similar BMI. Male patients tend to have a lower BMI
on average. There is also a higher amount of patients with diabetes in Cluster 3
which would be an indicator of more obese patients in that group.

• Cluster 4 — High Risk with pre-existing Conditions: Patients from all
age groups, with the highest proportion of patients between [59, 74]; Largest
hospital stay duration 11.0 ± 15.0IQR; Highest proportion of patients with a severe
hospitalization stay, mostly with patients that were admitted to ICU, ventilated
and deceased.

5.1.2 Clinical Data Prediction

The best performing model identified in Section 4.3.2, SVC with balanced weights, was
used to train the final classifier. Hyperparameter tuning was performed in a grid-search
cross-validation approach. The best metrics in terms of ROC-AUC where found for
C = 25 with a linear kernel and seed 0, with a ROC of 0.795 ± 0.063 on the training
set and 0.780 on the validation set. Per class sensitivity and specificity are found in
Table 5.2.

When comparing those results to other publications, we get similar results. Specificity
for ICU admission and mortality are equally high when compared to Zhao et al. [2020]
for instance, with sensitivity and specificity of the risk scores were 10.5% and 99.2% for
predicting ICU admission, and 7.1% and 100% to predict mortality. Others, using a risk
model achieve 28.7 sensitivity and 98.2 specificity for identifying high risk patients [Dai
et al., 2020].

Different refit strategies can be used in order to optimize the classifier towards a certain
prediction target and penalize wrong predictions. The model presented previously was
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5. Results and Evaluation

Figure 5.6: Confusion Matrix of the used model for the general population dashboard.

retrained to maximize recall/sensitivity. Higher sensitivity scores are more important to
doctors for instance, who do not want to miss patients with risks. This model is finally
trained to be used for the general population in a way that they are able to get a risk
assessment for individual inputs. Here we only want to correctly identify people without
risks, focusing on specificity.

For the sake of completeness, the model with the best specificity was trained by focusing
on balanced accuracy. The confusion matrix for that model is shown in Figure 5.6. Most
miss-classifications are observed for the hospitalized class, which makes sense given its
the majority class. Patients that had a mortal outcome following ventilation and ICU
admission were often falsely classified to ICU, ICU + Ventilated and Deceased, proving
the classifier was able to detect high risk outcomes pretty good while being too pessimistic
on many hospitalized only patients.

5.1.3 Image Data

In this Section prediction results using CXR images and radiomics feature extraction are
presented. Results are shown for the automatic image segmentation after evaluating a
best performing model through qualitative and quantitative evaluation shown in Section
4.4.

Automatic Image Segmentation

Results of the reverse transfer learning on the MC and SD validation split, as shown in
Figure 4.19 are presented in Table 5.3. Preprocessing had a slightly positive impact on
Dice and Jaccard scores as well as lower standard deviations, leading to more stable results.
Also, the results are not extremely far off from validation metrics of the original Baseline
Model A architecture trained on the MC and SD dataset, as reported in Table 5.3. The
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5.1. Quantitative Evaluation

loss loss-std Jaccard Jaccard-std Dice Dice-std

Baseline Model A 0.0531 - 0.9268 - 0.9611 -

Model A 0.0905 0.0560 0.8858 0.0570 0.9384 0.0342
Model E 0.1062 0.0763 0.8794 0.0655 0.9344 0.0402
Model A** 0.0955 0.0664 0.8884 0.0596 0.9398 0.0353
Model E** 0.0931 0.0681 0.8846 0.0553 0.9378 0.0325

Table 5.3: Results for model evaluation on the validation set from the original training
dataset MC and SD as shown in Figure 4.19. ** depicts the usage of preprocessing. The
baseline model shows the metrics for the Model A architecture trained on the MC and
SD dataset and validated on the validation set. The remaining results refer to validation
metrics that were achieved by learning from segmentation masks from the respective
model architecture and preprocessing (blur and adaptive histogram equalization). Best
results are in bold.

best results in terms of evaluation metrics are observed for Model A with preprocessing,
which was ultimately selected as the segmentation method.

Segmentation results of the chosen model for some examples from the validation dataset
are shown in Figure 5.7. Most of the resulting segmentation look good, with a high
amount of overlapping areas. Some artifacts are visible that occur in visually similar
regions. The artifact on the finger may be caused by more regularly overlapping tubes in
the SBU dataset that are dividing the lungs, which leads the segmentation to respect
those areas as well, but this is not the case for all samples (compare mid picture). The low
score on some images might be due to the less opaque structure in the sample which lead
to the worst result in the sample provided here. Generally the automatically segmented
area tends to be smaller than the original.

Radiomics Features as Biomarkers

In Figure 5.8 the highest negatively and positively correlated features in regard to a less
severe disease progression during the hospitalization are displayed. Given the correlation
is only between -0.4 and +0.3 this can only be considered as a weak to medium correlation
between the outcome and the radiomics features.

Figure 5.9 and Figure 5.10 show examples of lower and higher values for features that
showed a the highest correlations for either a less severe or more severe outcome. The
highlighted regions in the images are only shown for the respective lung used for feature
extraction. The values reported in the figures as part of the image titles were used in a
centered and scaled representation for computation of the correlation heat map depicted
in Figure 5.8.

The radiomics feature Informational Measure of Correlation in right lungs (Imc_r)
showed a the highest negative correlation for a less severe stay at the hospital, so
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5. Results and Evaluation

Figure 5.7: Results for the reverse transfer learning approach on MC and SD validation
data. Training data created from Model A with Gaussian blur and adaptive histogram
equalization. Green Area: GT; Red: Automatic segmentation; Yellow: Overlap.
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5.1. Quantitative Evaluation

Figure 5.8: Radiomics features correlation heat map with hospitalization outcomes. Top-
10 negatively and positively correlated features towards less severe disease progression.

that lower values would indicate a less severe case in CXR. The feature quantifies the
complexity of the texture in the ROI by utilizing the Gray Level Size Zone Matrix
(GLSZM). The examples in Figure 5.9 show that lower values are results of cleaner
regions with less disturbances in the image. The texture is more smoother when gray
values are more similar. For higher values, we observe that those occur in lungs that are
pervaded by tubes which probably indicate the CXR was taken during ICU admission.
The disturbances followed by those artifacts result in more complex textures. Keeping
in mind the negative correlation between Imc_r and less severe cases, the results are
reasonable.

In Figure 5.10, examples with lower and higher values of the Gray-Level Non Uniformity
in left lungs (GLN_l) are shown. This feature measures the variability of gray-level
intensity values in the image, with lower values indicating more homogeneity 1. Again,
lower values here indicate a less severe disease outcome (negative correlation) while the
feature has shows the highest correlation for patients that were Ventilated, commissioned

1https://pyradiomics.readthedocs.io/en/latest/features.html#module-radiom

ics.glszm
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5. Results and Evaluation

Figure 5.9: Results with lower and higher values for Informational Measure of Correlation
in right lungs (Imc_r), quantifying the complexity of the texture. Higher values occur
when lung regions are pervaded by tubes, indicating ICU stay. Lower values are visible
in more clean examples. Green areas show the results of the automatic segmentation.

to the ICU and had a mortal outcome. Again lower values are observed for clean images.
Higher values are experienced for images that may be accompanied by artifacts such as
cables, but also are reported in images that show a higher proportion of smaller white
areas which could indicate inflamed areas in the respective ROI.

Prediction on Radiomics Features

Again, the best model was trained using grid-search hyperparameter tuning for SVC with
balanced weights. The best model was found for C = 3 with a radial basis function kernel
and seed 420. Best results were found when tuning for ROC with a score of 0.747 ± 0.063
on train and 0.776 on validation. Sensitivity and specificity respective to each class are
reported in Table 5.4. The only comparable work found to the best of our knowledge is
from Varghese et al. [2021]. They report AUC 0.71 for predicting death and 0.61 for ICU
admission for two binary classification settings.

The confusion matrix shown in Figure 5.11 highlights a few issues. The model ultimately
not able to change predictions affection towards majority classes, in this case hospitaliza-
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5.1. Quantitative Evaluation

Figure 5.10: Results with lower and higher values for Gray-Level Non Uniformity (GLN)
in left lungs. Higher values are visible for regions pervaded by tubes and in images with
more inflamed regions. Lower values are visible in more clean examples.

TPR-Sensitivity (recall) TNR-Specificity

Hospitalized 0.678 0.870
Ventilated 0.300 0.928
ICU 0.175 0.934
ICU + Ventilated 0.477 0.837
Deceased 0.116 0.946
Deceased + ICU 0.000 0.995
Deceased + ICU + Ventilated 0.533 0.881

Table 5.4: Class sensitivity and specificity for prediction based on radiomics features.

tion, ICU + Ventilation and Deceased + ICU + Ventilation. Minority classes are thus
misclassified often, hence Deceased + ICU often classified as Hospitalized.
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5. Results and Evaluation

Figure 5.11: Confusion matrix for best performing classifier on radiomics features.

TPR-Sensitivity (recall) TNR-Specificity

Hospitalized 0.705 0.839
Ventilated 0.000 0.989
ICU 0.087 0.936
ICU + Ventilated 0.413 0.928
Deceased 0.632 0.938
Deceased + ICU 0.000 1.000
Deceased + ICU + Ventilated 0.662 0.785

Table 5.5: Class sensitivity and specificity for prediction based on merged feature sets.

5.1.4 Combined Prediction

The best SVC classifier using grid search (C = 0.25, seed = 64532, radial basis function
kernel) scored 0.812 ± 0.024 on train and 0.785 on validation set. This indicates a
slight improve from electronic health data features after merging with radiomics features.
Sensitivity and specificity are again shown in Table 5.5, with the respective confusion
matrix reported in Figure 5.12.
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5.2. Qualitative Evaluation

Figure 5.12: Confusion matrix for best performing classifier on merged feature sets
predictions.

5.2 Qualitative Evaluation

Here we present the final solutions of our VA application in form of screenshots. The
solutions are validated following the Nested Model proposed by Munzner [2009] as
presented in Section 3.5.3. We focused on the inner two levels of evaluation — namely the
algorithm validation and the encoding and interaction techniques. Algorithm validation
is done by logging runtime of our solutions. Encoding and interaction techniques
are validated by conducting interviews with users from the general population group.
Therefore we prepared two tasks that were to be solved in the general populations space
of the application. Finally we gathered open feedback. Furthermore we used usage
scenarios for all tasks defined in Section 4.2 to prove their usability [Isenberg et al., 2013].

5.2.1 Medical Experts

Medical 1: Overview

Figure 5.13 shows the first part of the medical experts page. The first task was about
giving medical experts an overview of the data that may arrive at the application via a
casual encounter. As the dashboard is conceptualized for analysis of medical health data
as well as CXR images, an overview is given using two of the more easily understandable
variables in the dataset. Therefore an aggregated view is generated that shows patients
in a 2D scatterplot with number of hospitalized days and a count of CXR images
(deduplicated) which lets users explore. Hospitalization outcomes are encoded via a mixed
continous and categorical colormap. Ventilation gives blue elements, ICU admission red
elements and mortal outcomes are darker. Outcomes can be quickly filtered either via
selectboxes or the legend in the scatterplot itself (Figure 5.13A and Figure 5.13B). This
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5.2. Qualitative Evaluation

lets a user compare different groups of patients easily.

In a tabular view on the right side shows the raw data. Here the user is able to additionally
filter or select for certain attributes given the data. For example a user can specify a
specific age range as highlighted in C or select only male patients with diabetes. The
scatterplot will adjust to only conclude the current actively chosen data from all inputs
and thus enables for repeatable interactions and comparisons.

Medical 2: Lookup

Given a user is familiar with the visualization or comes back to use the application, focus
is set on the discovery now. Raw data can be browsed either in the table consisting of
raw data or in the scatterplot to identify patients of interest. Those patients may be of a
certain subset of patients. One specific task here could be to find similar patients to one
that is currently at treatment at a medical facility or hospital. A doctor selects clinical
data such as preconditions and demographic information using the filter tools highlighted
in Figure 5.13C in Figure 5.13. Hovering over points of interest in the scatterplot shows
additional information of a patient which helps identifying patients of interest. Those
patients can then be selected in Figure 5.13D. This selection is defined as the output
of this task and is the input of the next part of the medical experts page. The current
selection is also highlighted in the data table (light blue background).

Medical 3: Decease Progression via CXR

Given a patient of particular interest has been selected in the previous task, a user has
the ability to check the patients hospitalization stay by viewing available CXR data
for this patient. This is shown in Figure 5.14. Image are not encoded in any special
way, only the automatic image segmentation is colorized in the respective images. Users
may navigate through available records by using a slider, highlighted in Figure 5.14A.
Special days of interest can be selected via this slider as well, for instance the beginning
or end of the hospitalization stay. Additionally the users have the option to disable
the automatic lung segmentation which may cover interesting areas for a clinician via a
checkbox (Figure 5.14B). This is indicated in the last two images which, are highlighted
as Figure 5.14C.

Medical 4: Predict Outcome with CXR Image

The last task defined for the medical experts group was focused on giving an outcome
prediction and as a form of decision making support. Here the user should have the
ability to produce a prediction outcome based on importing a new image. The resulting
page section in the VA application is depicted in Figure 5.19.
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5. Results and Evaluation

Figure 5.14: Medical experts page part two with image carousel. Users are able to
discover the hospitalization stay and progression via CXR images for a patient of interest.
The selected image is in the middle while the two previous and succeeding observations
are shown as well, where selection is done using a slider A. Segmentation can be toggled
on and off with a checkbox (B). C shows the difference between toggled segmentation
displays.

5.2.2 Analytical Experts

Analytical 1: Overview

The overview for the analytical experts is provided by using scatterplots and heat maps
as well as raw data tables. The final part of the page is shown in Figure 5.15. The
scatterplot is modifiable by providing X and Y-axis variables through drop-down menus.
Patients are encoded with color by hospitalization outcome and overplotting is battled by
using opacity on the points, highlighted as Figure 5.15C. The legend of the scatterplot
allows to filter for specific classes by clicking on the respective item. This allows for
identification of outliers, patients of interest and connections between variables, as well as
comparing different clusters with the help of encodings. Additionally a table is provided
(Figure 5.15D) which lets users inspect the whole raw dataset.

Another dropdown, highlighted in Figure 5.15B, enables changes the visualization style
to a heatmap, shown in Figure 5.16. Here a typical correlation heatmap is shown for all
variables in the dataset. Axis are removed to save space but hovering over the visualization
provides tooltips so that interesting areas of the heatmap can be investigated. Zooming is
supported by brushing and selecting rectangular areas in the plot. Additionally, another
heatmap provides correlation values between features and hospitalization outcomes
depicted as Figure 5.15B.

Analytical 2: Discover Imputation Strategies

Discovering imputation strategies is implemented in the second section of the analytical
experts page, shown in Figure 5.17. A user is able to choose from various imputation
strategies described and compared already in Section 3.3.2 and 4.1.1, while also specifying
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5. Results and Evaluation

Figure 5.16: Analytical overview using correlation matrix heatmaps. A: correlation
matrix for all features. B: correlation values of all features for each hospitalization
outcome.

Figure 5.17: Comparing imputation options. A: Choosing imputation method and
parameters. B: Displaying three changeable features with their distribution.

hyperparameters. This is highlighted as Figure 5.17A. Per default three variables of
different distributions are shown encoded as histograms, which can be modified as well
(Figure 5.17B). With this, users directly experience the impact of the imputation method.
Changing the imputation method produces a freshly imputed dataset (Task 2.1 ) and
takes less than 0.5s, besides multiple-imputation which takes about 10s.

Analytical 3: Discover Patient Clustering Strategies

Figure 5.18 shows the clustering section of the final implementation. Users again are
able to select different clustering strategies, Ward and k-means, and change hyperparam-
eters. The data used here is the previously imputed data from strategies chosen before.
Representation is shown in a 2-D scatterplot where the user can choose for 2-D PCA
data as well as t-SNE dimensionality reduced transformation. On the right side, two bar
plots show unsupervised clustering metrics, Silhouette and CH scores. Settings are shown
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5.2. Qualitative Evaluation

when hovering over the respective bar blots. With this solution, users are able to select
and change between clustering strategies, compare their outcomes by using scatterplots
and barplots for metrics, as well as a stacked barplot Figure 4.29 potentially showing
differences in features, solving tasks from requirements Analytics 3.1 and Analytics 3.2.
Clustering takes about 2 − 3 seconds.

Analytical 4: Automatic Lung Segmentation

For this task we chose to use the same design as we did for Medical 4. In addition to
being able to upload a CXR, we also provide the option to change the pre-processing
strategy. Predictions are again presented using a barplot. Uploading and predicting
takes about 7 seconds. The image needs to be pre-processed, and submitted through the
network, before radiomics features are extracted from the new image and predicted using
the pre-trained model, so a lot is going on here after uploading a picture.

Analytical 5: Discover Radiomics Features

In the condensed view shown right side of Figure 5.20 radiomics features correlation
values with target hospitalization outcomes are shown, encoded in a 2-D heatmap. Here,
the hovering is also highlighted. Since the radiomics features are not very expressive by
their name alone, we added a textual description with a link to the official documentation
that describe each feature on the left side. The correlation values can be sorted by target
which can be chosen using the drop-down menu. The full view display all radiomics
features which adds another layer of explainability.

Analytical 6: Prediction

For the prediction task, our final design is displayed in Figure 5.21. Here the dataset as
well as a classifier of the five proposed classifiers in this thesis can be chosen. Classifier can
be optimized by changing hyperparameters using sliders and text inputs as highlighted.
The previously chosen imputation strategy in Task 2 is chosen here as well to impute data
after performing a train-validation split. No cross-validation is provided here as some of
the classifier trainings took several hours, especially for the radiomics features. Models
can be trained and compared using the lineplot Figure 5.21B, which shows common
metrics on the validatoin set. In addition to that, we provide the confusion matrix for
the validation data, allowing users to compare different models.

5.2.3 General Pop

General 1: Overview

For the general population we created an infographic. To keep it simple, we only included
information that we believed was common sense and where information was available in
the given dataset, including certain preconditions, demographic information and lifestyle
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5.2. Qualitative Evaluation

Figure 5.19: CXR image upload and outcome prediction with optional preprocessing
selection A. This selection is not removed in the the medical user groups page.

Figure 5.20: Comparing radiomics features. Condensed view showing correlation between
targets and features, full view showing correlation matrix for all features.
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choices such as smoking habits. When abstracting data for the general population, we
tried to encode the data in special ways that fulfil our need to communicate differences.

The graphic highlighted as Figure 5.23C shows this abstracted information for each cluster.
Preconditions includes diabetes, heart, lung and kidney disease as well as malignancies
as depicted in the legend Figure 5.23B, or Figure 4.37. For each of the preconditions, an
expressive icon was chosen that encodes it. If the precondition was present in the cluster
more often then in others, it was colorized, if not it was gray-scaled. More detailed
information on the differences is given Section 5.1.1. As for demographics, we used the
given age groups in the dataset and encoded patients age distributions accordingly by
corresponding gender symbols. Where one gender was significantly more present, the size
has been adjusted. Additionally we created the possibility to get a textual representation
of the infographic as highlighted as Figure 5.23A. The explanations are shown in detail
in Figure 5.22.

Finally, we chose a scatterplot representation highlighted in Figure 5.23D: Instead of
sampling we computed outcome probabilities for each type of outcome for each respective
cluster. This implicitly meant that we were unable to visualize dedicated patients
outcomes and had to summarize and round values in order to encode in a meaningful
way. Therefore we included non-optional textual description below the actual plots to
improve understandability. For instance, for Group 3 the description is:

Out of a 100 Patients in this group, 18 patients were admissioned to the ICU,
12 patients had to be Ventilated, and 25 died.

This translates to the following in the scatterplots: out of a 100 patients, each patients
could either be admissioned to the ICU, ventilated or had a mortal outcome. For patients
sharing multiple outcomes, we either had to mix outcomes in the encoding (for example
one scatter with multiple colors) or multiple points per patient. We chose the latter, so
for each group this translates to 300 points. Another possibility here would have been to
sample patients from the groups (with replacement) so that real patients could have been
displayed. This could have the negative effect of skewing the distribution once again
though.

The clusters were reordered in ascending order by their actual risk. In particular this
meant that cluster 2 and 3 have been swapped. Furthermore we used groups as the
notation of the clusters, since it is not given that layman users are aware of what a cluster
actually is.

With this, we present groups of patients that should indicate which groups are most
similar to themselves or are of interest. We furthermore engage users to try out different
inputs for the next task, as we encourage interaction by abstract encodings which may
lead to a user inputting not only themselves but beloved ones and sharing the outputs
and findings with others.
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5. Results and Evaluation

Figure 5.22: Textual information optionally provided instead of the infographic, toggable
by the checkbox.

General 2: Hospitalization Outcome Prediction

Given the input for this task stems from the previous task, General 1, the VA application
is also meant to intertwine usage in between both areas of the page. The design is shown
in Figure 5.24. User inputs are gathered via conventional web-tools like check-boxes and
drop down menus. Where multiple inputs are available that are abbreviated in ways
to save space, help pop-ups are implemented as illustrated in Figure 4.36. The group
chosen in the preceding task is now used as the prediction model is trained on the whole
datasets variables. Here, we only ask for a subset of inputs as it would not be feasible to
ask for detailed medical variables that need prior laboratory examination. Those values
are instead merged to the inputs and used as inputs for the prediction model in the
background. Group-wise means are used here. Additionally there is the possibility to
set this to Automatic which will instead use a k-Nearest Neighbour approach using the
inputs provided to estimate the remaining data from the dataset. Prediction results are
presented in form of a doughnut plot, as most users should be familiar with pie plots,
although concerns exist about the use of pie charts when displaying percentages (see
Section 4.7.1).

In addition to that we also display the five most similar patients estimated from the
user inputs per nearest neighbour search. This should improve prediction explainability
by providing insights into consistency as well as stability of a model and is proposed by
research in the explainable machine learning area [Molnar, 2022, Section 3.5 and 3.6].

5.2.4 Runtime Performance

As for performance, we measured runtime directly in the code with debug outputs
before and after function calls or dashboard interaction. Interactive plots built with
Plotly update in almost real-time without active re-rendering, as used in Figure 5.13,
Figure 5.15C, Figure 5.16A). Building the carousel plot with images (Figure 5.14) runs
for 0.1s to 0.8s depending on the number of images available for the selected patient.
Uploading an image and processing it for automatic segmentation takes up to 3s, while
radiomics feature extraction is fast with 0.3s and prediction with less than 0.01s.
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5.2. Qualitative Evaluation

Imputation performance is depending on the method. Except for multiple imputation,
which may take up to 12s, methods run for less than 0.8s, and only need to run once at
a preprocessing step. Interactive clustering is happening in near-real time with less than
0.5s. Classifier training and prediction, as shown in Figure 5.21, takes less than 1s in
most cases, depending on the hyper parameters used. Cross validation is not supported
here, because especially for radiomics features it took minutes to finish, which would
limit the responsiveness of the dashboard as it is not trivial to build a multi-thread
environment in streamlit.

Most of the methods results and trained models as well as user uploads are cached
manually in the background to improve iterative tasks, such as Medical 1, Analytical 2.2,
3.1 and 6. For instance if a new clustering method is tried out for task Analytical 3.1,
the previously selected imputation is re-used rather than re-trained and reduces runtime
to less than 0.03s.

When comparing to the thresholds provided in Section 3.5.3 defined by Nielsen [1994], we
observe a freely navigable application with most wait times below 1s. A percentage-based
indication is not provided in the case of the multiple imputation which showed the highest
wait times, as it is the only case. All wait times are indicated by streamlit itself, as
shown in Section 4.7.2.

5.2.5 Case Studies

Finally we conducted case studies with a small sample of users from the general population
user group (N = 6, 3 male, mean age 28 ± 2.4). Therefore two assignments were prepared
to validate encoding and visualization design on the previously specified user group.
Before the assignments, the users had time to get familiar with the application and were
able to ask questions.

Case 1 - Till: A fried of mine is Till. He is 28 years old and has diabetes. He is a
current smoker and not very sporty. To which risk group would you assign Till to? What
would be his outcome prediction if he caught COVID-19 and was hospitalised?

The idea was to assign the patient Till to group 2, as he was male, of young to middle
age and had diabetes. This can be seen in Figure 5.23C, where group two has a bigger
demographics male glyph, and the only precondition that is color coded is diabetes.
The additional information of being not very sporty and a current smoker lead four
interviewees to choose group 4 over group 2 instead, wavering between the two groups
when asked. This also was a legitimate answer given the introduced graphic describing
the groups. Inputting the patients data for the prediction was successful in all cases and
the prediction was successfully interpreted using the doughnut chart.

Case 2 - Aunt Mary-Ann: Mary-Ann is in her sixties. She loves cake and thus
struggles with diabetes. As a former smoker, she also struggles with high blood pressure
and coronary artery disease. To which risk group would you assign her to? What would
be her outcome prediction if she caught COVID-19 and was hospitalised?
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For this case, the appropriate answer would have been to assign this test patient to group
4. This is again depicted in Figure 5.23C. When only looking at the preconditions here,
group 3 and 4 would be legitimate. Given that group 3 only has gender glyphs in the
elderly region (74 to 90 years old), while group 4 has them everywhere, group 4 would
be the correct assignment. Two interviewees chose group 3 instead, which indicated
misinterpreting the depicted age information inside the infographic. Interviewees did
not do well when inputting specific pre-conditions like coronary artery disease, whose
abbreviation CAD was just an option in a drop-down menu. Although a help icon was
provided which explained this, interviewees rather asked for exact guidance in this case.

General Feedback

For feedback, all interviewees positively outlined the possibilities of inputting your own
data and playing with the application. Four mentioned the doughnut plot was intuitive
and easy to understand, while two additionally pointed out the chosen colors, which
successfully divided outcome categories in their opinion. One mentioned the doughnut
chart could have been a little bit bigger. Four also mentioned the infographic in addition
to the group-wise outcome scatterplot was nice, intuitive or easy to understand. Two
found that it was confusing, hard to understand or required detailed attention. As a
help for this, we initially provided additional textual feedback which could have been
used in order to get a textual description instead of the graphic. Only one interviewee
tried this out without previously hinting and stated that it indeed makes it very clear to
understand afterwards.

Three interviewees wished there was a more granular differentiation between the age
groups, in particular they stated the age group of 18 to 59 years was too large. Two
interviewees would have found it helpful to have information about patients fitness or
sportiness in the groups. One pointed out it would be helpful to update the data with
vaccination data in order to show it to vaccine sceptical people. Most interviewees did
not make much use of the similar patients table provided. One stated that it was more
confusing than helping him understanding the predictions. He proposed to make this
information optional by providing a link to another page for instance.

5.2.6 Discussion & Limitations

The solution proposed here was motivated by the ongoing COVID-19 pandemic and is a
highly interdisciplinary topic, ranging from machine learning and predictive analytics, to
communication of results to different user groups including laymen users, while handling
high volume medical data.

The SBU COVID-19 dataset used in this thesis comes with some limitations. The dataset
itself is not considered a large dataset by machine learning definition, hence only having
1297 records with patients that have CXR images available as well. But for medical
purposes it can be considered quite big. One downside is that no data of non-hospitalized
patients is included, or available in the same way (including CXR), which introduces
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some bias towards already worse disease progressions, with only serious illnesses having
the probability of being included in the dataset. Additionally, no information about
the vaccination status is available in the dataset given it was recorded prior to vaccine
availability. Given the supposedly high protection from serious illness through vaccinations
[Polack et al., 2020; Anderson et al., 2020], the data could look different when recorded
again after successful vaccination strategies haven taken place.

Segmentation of the available images showed that real-life applications and real-life data
introduce certain problems for automatic solutions by including artefacts which are
not included in clean, openly available datasets prominently used for transfer learning
processes (hence Section 2.2). Additionally, the CXR data used in this thesis was reported
to be recorded anterior to posterior (AP), when normally data is recorded posterior to
anterior (PA), also also the transfer learning datasets MC and SD were recorded PA.
Additionally, it is not clear which exact X-ray device model was used to record the SBU
data. How different device types can influence transfer learning and segmentation has
already been researched by Vidal et al. [2021]. Figure 5.25 shows how inter-device type
learning helped reducing segmentation artifacts that are similar to the ones reported in
the dataset of this thesis.

While working with the medical image data, we decided to ignore the temporal aspects
of the images (and also dropped temporal information from the electronic health data, f.i.
days hospitalized). Whilst the information of how long a patient was already hospitalized
and when the image was taken would have been available, we decided to build prediction
on segmentation of all images. This introduces some bias as to how the features are
extracted by PyRadiomics: given the already progressed disease is sometimes clearly
visible in terms of artefacts such as cables from the ICU admission (hence Section 5.1.3)
in the images and could have been mitigated by pre-selecting only clean images. We prove
that radiomics features are able to detect those artefacts and predictions are possible
based on this data to some degree, but for patients with images already from the ICU
this is in danger of being a confirmation bias, meaning we confirm what was already
known prior. Our results in terms of ROC-AUC outperforms results of previous work
done by Varghese et al. [2021]. Their work was based on the same data, but only kept
the first two observations (CXR images) per patient, removing this bias. Following
this, our application is able to predict the outcome of a patient given any state of the
hospitalization, whilst the solution of Varghese et al. [2021] would only be legitimate to
be used in the beginning of the hospitalization stay.

Lastly, it is key to mention that non of the work that was done in this thesis was done in
cooperation with medical experts or clinicians. This is a downside which was discussed
already in research done about COVID-19 in various works [Roberts et al., 2021; Heaven,
2021].
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Figure 5.25: Results from Vidal et al. [2021]. Red regions depict automatic segmentation
from inter-domain transfer learning, blue regions are results from inter-device-type transfer
learning. Inter-device-type learning helped reducing artifacts.
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CHAPTER 6
Conclusion and Future Work

Revisiting the research questions defined in Section 1.2, this work contributes to the state
of the art in various ways:

Segmentation: We show that automatic lung segmentation using transfer learning is
possible in real-life data scenarios with artefacts, such as COVID-19 related CXR scans.
We reason with qualitative and quantitative assessment, where we proposed a novel way
of quantitatively evaluating segmentation error without GT using a reverse transfer
learning approach. Furthermore, we show that reproducible radiomics features such
as Informational Measure of Correlation (Imc) or Gray-Level Non Uniformity (GLN)
extracted from CXR images can be used as biomarkers on CXR images regarding COVID-
19 disease prediction, given the features provide methods to detect irregularities and
complexities of gray level intensities in a region of interest.

Prediction: When comparing to state-of-the-art research, we propose a granular pre-
diction algorithm which performs in-line with previously proposed solutions predicting
COVID-19 (hospitalization) outcomes. We indicate that merging image features

with electronic health data may improve prediction results by a short amount,
from electronic health data to merged features with 0.780 → 0.785 and from sole image
features to merged with 0.776 → 0.785 ROC/AUC. We clustered patients into groups
that inherited different patients proven by significance analysis, leading to four different
risk groups of patients.

Visual Analytics: We created a novel VA application to present findings in an effort
to increase risk perception in the general population. In addition, the application
provides decision making support for medical experts and analysts working with
this COVID-19 data. We estimated algorithm runtime by measuring our system between
interactions as proposed by Munzner [2009], indicating interactive usage is possible while
the runtime of almost all algorithms supports interactive data analysis with wait times
of less than 1s. We evaluated design choices by conducting user interviews using case
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studies with users from the general population. Evaluation indicated good usability
and understandable presentation of prediction results using a doughnout plot and color
encodings. Users found it interesting to input different data and experience how the
outcome changes given different inputs. An infographic (Figure 5.23C) aimed to present
different risk groups had mixed effects, with the majority of users being able to use it
as designed. We additionally provided usage scenarios for the remaining user groups
conducted by ourselves.

The thesis opens up interesting pathways for future work and scientific research. On the
fly and explainable segmentation of real-life data is a very important topic in the future,
as medical workers should trust and rely on applications built to reduce manual work. It
is of further importance that applications are deployed in practice in order to measure
their value in real-life scenarios and to find shortcomings and improve their results while
improving trust of medical workers and experts into this systems. This also includes
evaluation of machine learning solutions beyond development in practice, building robust
solutions to measure performance when no GT is available. The pandemic ultimately
put a lot of stress on medical health care workers [Ruiz-Fernández et al., 2020; Gavin
et al., 2020] which may increase the urgent need of developing automated and robust
machine learning assisted solutions in the future.

Future work on the SBU data can include other areas such as predicting the hospitalization
length of stay for instance. Furthermore, gathering data including vaccination status of
patients would yield a promising way of mitigating vaccination hesitancy, when included
in applications like the one proposed in this thesis. Further work would be required in
a long-term and wide user study to determine the usability and insights (and therefore
the impact) that visual analytics solutions can provide to the general population with
regard to COVID-19 risk perception and education. As hinted in the limitations section,
a natural next step would be to evaluate the application with medical experts to estimate
usability.

All in all, this is a first step towards building dedicated VA applications for different
user groups, from providing interactive analytical possibilities to raising awareness into
publicly available COVID-19 data which may be helpful in battling and controlling the
pandemic.

The work conducted in this thesis has been submitted and accepted for presentation at
EG VCBM 2022 (the 12th Eurographics Workshop on Visual Computing for Biology
and Medicine) under the title “Predicting, Analyzing and Communicating Outcomes
of COVID-19 Hospitalizations with Medical Images and Clinical Data” by Stritzel and
Raidou, and will be published at the Digital Library of Eurographics1 in September 2022.

1https://diglib.eg.org/

136

https://diglib.eg.org/


APPENDIX A
Appendix

Figure A.1: Model A loss curves and validation metrics on the training process. Ter-
naususNet VGG11, no rotation, Adam optimizer, no early stopping.
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Figure A.2: Model B loss curves and validation metrics on the training process. Ter-
naususNet VGG11, ±30, AdamW optimizer, early stopping after 10% of maximum epochs
do not yield performance increase.

Figure A.3: Model C loss curves and validation metrics on the training process. Ter-
naususNet VGG11, ±30, Adam optimizer, early stopping after 10% of maximum epochs
do not yield performance increase.
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Figure A.4: Model D loss curves and validation metrics on the training process. Ter-
naususNet VGG11, ±25, Adam optimizer, early stopping after 20% of maximum epochs
do not yield performance increase.

Figure A.5: Model D loss curves and validation metrics on the training process. U-Net
blueprint, ±25, Adam optimizer, early stopping after 20% of maximum epochs do not
yield performance increase.
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Figure A.6: Trying out different hyperparameter settings perplexity and learning-rate for
t-SNE. Chosen values: perplexity = 50; lr = 500.

140



List of Figures

1.1 The workflow of the thesis. Radiomics features and clinical user data will be
used to train respective models which can be combined for a final prediction.
Models can also be re-used to predict user input from the application. . . 2

2.1 Interaction between information media type consumed and trust [Gehrau
et al., 2021]. Data was gathered in Germany in late 2020 with 629 respondents. 6

2.2 Images from the Stony Brooks COVID-19 Dataset, first row; and the Mont-
gomery County and Shenzen dataset [Jaeger et al., 2014] used for transfer
learning later on, second row. High contrast images were removed from the
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Different challenges when dealing with image processing in general [Li et al.,
2022]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 How computers see images. Information is defined as pixel values that are
the basis for computation [Li et al., 2022]. . . . . . . . . . . . . . . . . . . 15

3.3 Top 5 Accuracy on the ImageNet Dataset. A high increase is observed after
the introduction of AlexNet in 2013, going beyond traditional low-level feature
detection (SIFT) [ima, 2022] . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Schematic differences between image processing techniques. Gray boxes depict
automated processes by a machine. Rule-based systems were created with
domain knowledge. Machine learning learns these rules based on extracted
features. With representation learning, the goal is to also learn feature
extraction as well, while deep learning enables learning of different feature
layers. Illustration adapted from Bengio [2015]. . . . . . . . . . . . . . . . 18

3.5 Most popular activation functions. . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Sparse and dense network connectivity [Goodfellow et al., 2016, Section 9.2].

Highlighted neurons in earlier layers influence highlighted neurons in later
layers. Connections are directed edges. A represents a Dense CNN, where
the receptive field is smaller than in the equivalent network displayed as a
fully connected network (C). B shows how the receptive field gets bigger over
many convolutions in a dense CNN. . . . . . . . . . . . . . . . . . . . . . 22

141



3.7 Illustration of the inner processes in a CNN. Multiple parallel feature maps are
trained in hidden layers on the input pixel values using convolutions. Earlier
layers specify lower level features while subsequent layers will gradually learn
more high level representations. Image from Goodfellow et al. [2016]. . . . 23

3.8 Convolution of one feature map with 3x3 kernel, 1-padding of the input
and stride 2. The stride > 1 forces the feature map to be of smaller size,
downsampling the image implicitly. An activation function is used (ReLU)
which sets negative values to zero (compare Figure 3.5), which is followed
by a 2x2 max pooling operation which again, is reducing the feature maps
dimensions. This is repeated in parallel many times to create many feature
maps with different kernels. . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.9 Originally proposed U-Net architecture by Ronneberger et al [Ronneberger
et al., 2015]. Horizontal grey connections are skip connections enabling faster
learning and combination of high and low level features in the expanding
part of the network due to copying feature maps from the convolutions in the
decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.10 Examples of extracted radiomics features for necrotic lung-cancer in CT scan
images. Feature-maps have been color coded and used as an overlay for the
gray-scale CT scans. Slightly modified version adapted from Mayerhoefer
et al. [2020]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.11 Feature extraction with PyRadiomics [van Griethuysen et al., 2017]. . . . 29
3.12 Illustration of Principal Component Analysis for the MNIST hand-written

digits dataset in a scree-plot. The left plot shows the explained variance for
the first 100 principal components, showing a massive decrease after the first
20 features in explained variance. When the line is flattening out one might
decide to stop and use those number of components. This is a scree-plot.
The right plot shows the cumulative sum of explained variance ratios. One
common (and the default in scikit-learn) is to use 95% of explained ratio as a
stopping criterion for the number of selected components. In this example,
given the maximum is the number of dimensions is 784, representing one
dimension for each pixel, 95% of the variance would be achieved after 150
principal components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.13 PCA and t-SNE representation of a 10% sample of the MNIST dataset. PCA
is successfully distributing numbers that differ from one another, for example
zeroes and ones which should be clearly distributable in pixel-space as well.
It does struggle though with numbers that are more similar, hence eight and
three. T-SNE is doing a much better job in the case of MNIST, being able to
more clearly separate the classes, with similar ones being near each other or
having overlapping boundaries, for example four and nine. . . . . . . . . . 38

3.14 Typical illustration of a confusion matrix in a binary classification setting. 42
3.15 Balanced weights effect displayed with a SVM classifier and a binary toy

dataset. Larger points depict higher weighted observations, changing the
decision boundaries of the classifier. . . . . . . . . . . . . . . . . . . . . . 44

142



3.16 Clustering methods compared on toy datasets, illustrating different clustering
results for each respective method. Figure adapted from scikit-learn docs1. 45

3.17 Visual analytics process by Keim et al. [2008], characterized by interaction
between data, visualization and models while users discover knowledge. . . 51

3.18 Design triangle as proposed by Miksch and Aigner [2014]. . . . . . . . . . 52
3.19 Multi-Level typology of abstract visualization tasks by Brehmer and Munzner,

adapted from [Brehmer and Munzner, 2013]. Task motivation why? is defined
in a top-down way, from high level definitions to detailed low level taxonomy
(consume → search → query). Methodology on how the task is solved is
defined in how?, while also defining the tasks input and output in what?.
Defining input and output allows for the definition of subsequent paths. . 53

3.20 Nested Model for Visualization Design and Validation. Outer layers operate
as the input for the succeeding inner layer. Image from Munzner [2009]. . 55

4.1 Comparing different imputation methods and their impact on clustering
metrics. Indicator method is abbreviated with mi and zero-imputation was
used here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Imputation methods impact on feature distributions in the dataset shown for
three example features, one binary and two numerical. . . . . . . . . . . 62

4.3 Abstract visualization task design for the medical experts in visual notation
as proposed by Brehmer and Munzner [2013]. . . . . . . . . . . . . . . . . 63

4.4 Abstract visualization task design for the user with analytical background in
visual notation as proposed by Brehmer and Munzner [2013]. . . . . . . . 65

4.5 Abstract visualization task design for the general population. . . . . . . . 68
4.6 K-means distortions plot showing the sum of squared distances for each

observation for kǫ[2, 25]. The error band is a 95% Confidence Interval for 100
repetitions with random initialization. . . . . . . . . . . . . . . . . . . . . 69

4.7 Clustering scores for the different methods with different number of k-clusters.
Numbers in the DBSCAN Silhouette plot indicate the number of clusters
created for the respective ǫ with minsamples = 10. . . . . . . . . . . . . . 69

4.8 PCA scree plot and cumulative sum of explained variances for the electronic
health data. The 95% explained variance is highlighted as the green dashed
line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 PCA metrics for different number of principal components. Number of clusters
resulting in DBSCAN settings are again plotted next to the respective setting
in the graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.10 Clustering after two-dimensional PCA compared. Parameters for k and ǫ used
according to best metrics in Figure 4.9. . . . . . . . . . . . . . . . . . . . 72

4.11 T-SNE visualization of the feature space with color coded cluster memberships
for each respective method. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.12 Choosing the best number of clusters k for K-means clustering. Silhouette
would argue for k = 2 but the difference for higher choices is not that big.
The elbow method would argue for k = 4. . . . . . . . . . . . . . . . . . . 73

143



4.13 Medical data prediction results for multiple metrics and pipelines. Confidence
interval (±) is given by standard deviation over cross validation folds. XGBoost
classifier implementation did not have a balanced-weights setting and has no
results in this case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.14 Visual representation of working with the medical image data. . . . . . . 76

4.15 Using different image preprocessing techniques prior to segmentation: No
preprocessing, median filtering + histogram equalization, Gaussian blur +
histogram equalization, adaptive histogram equalization. Ideally the segmen-
tation is not utterly confused by cables as observed in sample 3 and 4, but
is able to ignore the artifacts without increasing the segmentation region.
Additional smaller regions outside are removed in a post-processing step, only
keeping the two largest areas. Green indicates segmentations. . . . . . . . 78

4.16 Different image preprocessing techniques continued. Tuning adaptive his-
togram equalization by using local averaging methods. Green indicates seg-
mentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.17 Comparison of segmentation results for models described in Table 4.4 without
image preprocessing. Green indicates segmentations. . . . . . . . . . . . . 80

4.18 Comparison of segmentation results for models described in Table 4.4 with
Gaussian blur and adaptive histogram equalization. Hyperparameters used:
Gaussian blur σ = 1, histogram equalization clippling_limit = 0.01. Green
indicates segmentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.19 Model evaluation strategy inspired by Valindria et al. [Valindria et al., 2017].
[1] MC and SD dataset is divided into train, test, and validation split. [2]
Train and test split are used to train multiple CNN models shown in Table 4.4.
[3] Models are used to generate segmentation masks for the SBU COVID-19
dataset. [4] Created masks and raw images are used to train new networks,
using the design from Model A. [5] Remaining validation split from the original
training data is used which was ignored in the training process of the first
bunch of models in [2]. Models from [4] are used to create segmentation masks
for the validation split, where ground truth data in form of segmentation
from human experts is available. [6] Since ground truth data is available here,
usage of standard metrics (Jaccard, Dice) is possible again. . . . . . . . . 82

4.20 [1] Results from automatic segmentation which may include artifacts. [2]
Separate areas are detected using contour detection. [3] The two biggest areas
are selected and the center is calculated using the contour points coordinate
information. The left area is defining the right lung and vice versa. . . . 83

4.21 1) Resized input X-ray image. 2) Automatically segmented image using
transfer learning. Potentially resulting in more than two areas, as shown in
this example. 3+4) Right and left lung is separated from the mask as shown
in Figure 4.20 5) Left and right lung are combined to define the final mask.
6) Resized input X-ray with the cleaned segmentation is blended on top. . 84

144



4.22 PyRadiomics features correlation heat map showing both ROIs of the images,
the left and the right lung. Feature classes are highlighted on the top and left
side of the map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.23 Radiomics features correlation heat map with hospitalization outcomes. . 86
4.24 Classifier performances on 10-fold cross-validation for radiomics features. 87
4.25 Classifier performances after merging the feature sets. . . . . . . . . . . . 88
4.26 Parallel Coordinates plot for iris dataset. . . . . . . . . . . . . . . . . . . . 91
4.27 An example of a heatmap, showing the data as tabular form and in the

heatmap representation, illustrating how color coding helps in detecting areas
of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.28 Radar plot for cluster comparison with mean features values per cluster. Too
many variables or clusters lead to overplotting. . . . . . . . . . . . . . . . 93

4.29 Stacked bar chart for comparing clusters of patients with a high number of
variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.30 Displaying hospitalization outcomes per cluster in a jitter plot. . . . . . . 95
4.31 Displaying hospitalization outcomes per cluster in a jitter plot with 100

patients sampled per cluster, encoding markers with symbols instead of
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.32 One of the most famous infographics by Charles Minard from 1861 [Tufte,
1985], showing the march of french army troops from Kaunas to Moscow and
back. The amount of living soldiers is displayed as orange and black bars being
located on a abstract map of the eastern european region, with highlighted
cities and rivers on the way. The bottom line plot shows temperatures during
the winter causing massive death tolls. . . . . . . . . . . . . . . . . . . . . 97

4.33 Illustration of pie charts versus bar charts. The differences between the lables
become quite clear in the bar chart whereas are hard to grasp in a pie chart.
Modified from original [User:Schutz, 2007]. . . . . . . . . . . . . . . . . . 98

4.34 Chernoff faces example from Chernoff [1973]. Features are mapped to facial
characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.35 Plotly interaction shown on a heat map. The rectangular selection in (a) gets
zoomed in and shows the selected area in a higher resolution. Double-clicking
resets the view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.36 Illustration of the help signs that pop out on every ? symbol either on click
or mouse hover, explaining inputs in multiple locations throughout the whole
application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.37 Illustration of full screen expansion which comes with every figure, image or
table element in streamlit, highlighted by the arrow. . . . . . . . . . . . . . 101

4.38 Illustration of wait time indication in streamlit. In the top right corner a
running animation is displayed indicating the application is computing (A). In
addition, a temporary text field is displayed indicating which actual method
is running at the very moment (B). All succeeding visualizations are made
semi-transparent which furthermore indicates processing (C). . . . . . . . 101

145



5.1 Correlation heat map for variables and prediction targets. Ordered ascending
by correlation for patients that were hospitalized only. . . . . . . . . . . 104

5.2 Final K-means clustering in PCA and t-SNE dimensionality reduced represen-
tation. Clear clutter of low risk patients are visible in the t-SNE representation
at the bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Distributions of outcomes per cluster. . . . . . . . . . . . . . . . . . . . . 106
5.4 Mean values of boolean variables for each respective cluster. . . . . . . . 107
5.5 Mean values of numerical variables for each respective cluster. Y-axis in

logarithmic scale. Variables names shortened for easier display: ∗ in Serum or
Plasma; ∗∗ in Serum, Plasma or Blood. ∗ ∗ ∗ Leukocytes values have been
inverted (multiplied by−1) for easier display. . . . . . . . . . . . . . . . . 108

5.6 Confusion Matrix of the used model for the general population dashboard. 110
5.7 Results for the reverse transfer learning approach on MC and SD validation

data. Training data created from Model A with Gaussian blur and adaptive
histogram equalization. Green Area: GT; Red: Automatic segmentation;
Yellow: Overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.8 Radiomics features correlation heat map with hospitalization outcomes. Top-
10 negatively and positively correlated features towards less severe disease
progression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.9 Results with lower and higher values for Informational Measure of Correlation
in right lungs (Imc_r), quantifying the complexity of the texture. Higher
values occur when lung regions are pervaded by tubes, indicating ICU stay.
Lower values are visible in more clean examples. Green areas show the results
of the automatic segmentation. . . . . . . . . . . . . . . . . . . . . . . . 114

5.10 Results with lower and higher values for Gray-Level Non Uniformity (GLN)
in left lungs. Higher values are visible for regions pervaded by tubes and in
images with more inflamed regions. Lower values are visible in more clean
examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.11 Confusion matrix for best performing classifier on radiomics features. . . . 116
5.12 Confusion matrix for best performing classifier on merged feature sets predic-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.13 First part of medical experts dashboard. Used for tasks Medical 1+2. Simple

queries for patient outcomes are available via checkboxes (A). An interactive
legend in the scatterplot can be used to additionally filter outcomes (B). The
interactive options in the table are highlighted as C. If a user of interest is
found, it can be selected using a dropdown (D). . . . . . . . . . . . . . . 118

5.14 Medical experts page part two with image carousel. Users are able to discover
the hospitalization stay and progression via CXR images for a patient of
interest. The selected image is in the middle while the two previous and
succeeding observations are shown as well, where selection is done using a
slider A. Segmentation can be toggled on and off with a checkbox (B). C

shows the difference between toggled segmentation displays. . . . . . . . 120

146



5.15 Overview for analytical experts. Users can choose between scatterplot shown
here (C), and heat map overview (B) and select features of interest (A).
Additionally a table with the raw dataset is presented (D) . . . . . . . . . . 121

5.16 Analytical overview using correlation matrix heatmaps. A: correlation matrix
for all features. B: correlation values of all features for each hospitalization
outcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.17 Comparing imputation options. A: Choosing imputation method and pa-
rameters. B: Displaying three changeable features with their distribution.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.18 Clustering and comparison of results. A: Clustering strategy and hyper-
parameters, scatterplot dimensionality reduction. B: Scatterplot with 2D,
dimensionality reduced data and color encoded clusters. C: Silhouette scores
for unsupervised clustering, consecutive clustering runs are appended here.
Used settings are shown when hovering over the bars as a tooltop. D: Calinski-
Harabasz scores, similar to C. E: Change from scatterplot to stacked barplot
representation, as shown in Figure 4.29 to display cluster statistics. . . . . 124

5.19 CXR image upload and outcome prediction with optional preprocessing selec-
tion A. This selection is not removed in the the medical user groups page. 125

5.20 Comparing radiomics features. Condensed view showing correlation between
targets and features, full view showing correlation matrix for all features. 125

5.21 Prediction model training. A: User inputs, including dataset, model and
hyperparameters. B: Metrics displayed in a lineplot for comparison. C:
Confusion matrix of predictions on a validation split. . . . . . . . . . . . . 126

5.22 Textual information optionally provided instead of the infographic, toggable
by the checkbox. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.23 General population overview. Main focus on abstract communication of pa-
tient groups and risk factors for hospitalized patients. A: Tickbox to switch
between infographic and textual description. B: Legend for the infographics
preconditions. C: Actual infographic showing the four clusters of patients
derived from clustering as discussed in Section 5.1.1. D: Scatterplot represen-
tation of a sample of 100 patients for each group of patients, indicating the
outcome by color encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.24 General population outcome prediction. Using inputs from a user to predict
the outcome, also making use of the previously presented patient groups. A:
chose group from Figure 5.23. B: Additionally, the five most similar patients
are gathered from the dataset using k-Nearest Neighbour search. . . . . . 130

5.25 Results from Vidal et al. [2021]. Red regions depict automatic segmentation
from inter-domain transfer learning, blue regions are results from inter-device-
type transfer learning. Inter-device-type learning helped reducing artifacts.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.1 Model A loss curves and validation metrics on the training process. Ternausus-
Net VGG11, no rotation, Adam optimizer, no early stopping. . . . . . . . 137

147



A.2 Model B loss curves and validation metrics on the training process. Ternausus-
Net VGG11, ±30, AdamW optimizer, early stopping after 10% of maximum
epochs do not yield performance increase. . . . . . . . . . . . . . . . . . . 138

A.3 Model C loss curves and validation metrics on the training process. Ternausus-
Net VGG11, ±30, Adam optimizer, early stopping after 10% of maximum
epochs do not yield performance increase. . . . . . . . . . . . . . . . . . . 138

A.4 Model D loss curves and validation metrics on the training process. Ternausus-
Net VGG11, ±25, Adam optimizer, early stopping after 20% of maximum
epochs do not yield performance increase. . . . . . . . . . . . . . . . . . . 139

A.5 Model D loss curves and validation metrics on the training process. U-Net
blueprint, ±25, Adam optimizer, early stopping after 20% of maximum epochs
do not yield performance increase. . . . . . . . . . . . . . . . . . . . . . . 139

A.6 Trying out different hyperparameter settings perplexity and learning-rate for
t-SNE. Chosen values: perplexity = 50; lr = 500. . . . . . . . . . . . . . 140

148



List of Tables

2.1 Medical data features including medical history, acute symptoms and general
information. ACEi: Angiotensin-converting enzyme inhibitors, HBP: high
blood pressure, ARB: Angiotensin Receptor Blockers. . . . . . . . . . . . 8

3.1 Overview of available features in PyRadiomics. . . . . . . . . . . . . . . . 28

4.1 Multilabel targets and occurrences in the dataset . . . . . . . . . . . . . . 58
4.2 Patient records with missing data by label. . . . . . . . . . . . . . . . . . 60
4.3 Missing-ratio by label for variables with high occurring NA’s. PH and A1C

(measurement of blood sugar) values are results of blood tests. Non-standard
pH blood values can occur due to acute kidney or lung function problems. 60

4.4 Deep learning models trained on Montgomery County and Shenzen Lung data
with various additions. TernaususNet architecture as proposed by Iglovikov
and Shvets [2018], U-Net architecture proposed by Islam and Zhang [2018]. 77

4.5 Results for the different methods of extracting radiomics features. . . . . 85

5.1 Outcome distribution per cluster. . . . . . . . . . . . . . . . . . . . . . . . 106
5.2 Per class Sensitivity and Specificity for the best performing classifier. . . . 109
5.3 Results for model evaluation on the validation set from the original training

dataset MC and SD as shown in Figure 4.19. ** depicts the usage of prepro-
cessing. The baseline model shows the metrics for the Model A architecture
trained on the MC and SD dataset and validated on the validation set. The
remaining results refer to validation metrics that were achieved by learning
from segmentation masks from the respective model architecture and prepro-
cessing (blur and adaptive histogram equalization). Best results are in bold.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Class sensitivity and specificity for prediction based on radiomics features. 115
5.5 Class sensitivity and specificity for prediction based on merged feature sets. 116

149





Bibliography

(2022). Imagenet benchmark. Online ; last accessed 20.01.2022.

Ahsan, M., Based, M., Haider, J., Kowalski, M., et al. (2021). Covid-19 detection from
chest x-ray images using feature fusion and deep learning. Sensors, 21(4):1480.

Ake, C. F. (2005). Rounding after multiple imputation with non-binary categorical
covariates. In annual meeting of the SAS Users Group International, Philadelphia, PA.

Akhloufi, M. A. and Chetoui, M. (2021). Chest XR COVID-19 detection. https:

//cxr-covid19.grand-challenge.org/. Online; accessed September 2021.

Akiyama, S., Hamdeh, S., Micic, D., and Sakuraba, A. (2021). Prevalence and clinical
outcomes of covid-19 in patients with autoimmune diseases: a systematic review and
meta-analysis. Annals of the rheumatic diseases, 80(3):384–391.

Anderson, E. J., Rouphael, N. G., Widge, A. T., Jackson, L. A., Roberts, P. C., Makhene,
M., Chappell, J. D., Denison, M. R., Stevens, L. J., Pruijssers, A. J., et al. (2020).
Safety and immunogenicity of sars-cov-2 mrna-1273 vaccine in older adults. New
England Journal of Medicine, 383(25):2427–2438.

Andridge, R. R. and Little, R. J. (2010). A review of hot deck imputation for survey
non-response. International statistical review, 78(1):40–64.

Apostolopoulos, I. D., Aznaouridis, S. I., and Tzani, M. A. (2020). Extracting possibly
representative covid-19 biomarkers from x-ray images with deep learning approach
and image data related to pulmonary diseases. Journal of Medical and Biological
Engineering, 40(3):462–469.

Arthur, D. and Vassilvitskii, S. (2006). k-means++: The advantages of careful seeding.
Technical report, Stanford.

Barandela, R., Sánchez, J. S., Garcıa, V., and Rangel, E. (2003). Strategies for learning
in class imbalance problems. Pattern Recognition, 36(3):849–851.

Becker, R. A. and Cleveland, W. S. (1987). Brushing scatterplots. Technometrics,
29(2):127–142.

151

https://cxr-covid19.grand-challenge.org/
https://cxr-covid19.grand-challenge.org/


Bengio, Y. (2015). Deep learning:theoretical motivations. Online; last accessed 23.03.2022.

Bengio, Y. and Delalleau, O. (2011). On the expressive power of deep architectures. In
International conference on algorithmic learning theory, pages 18–36. Springer.

Bernold, G., Matkovic, K., Gröller, M. E., and Raidou, R. (2019). preha: Establishing
precision rehabilitation with visual analytics. In Eurographics Workshop on Visual
Computing for Biology and Medicine (2019), pages 79–89.

Bertels, J., Eelbode, T., Berman, M., Vandermeulen, D., Maes, F., Bisschops, R., and
Blaschko, M. B. (2019). Optimizing the dice score and jaccard index for medical image
segmentation: Theory and practice. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 92–100. Springer.

Bishop, C. M. and Nasrabadi, N. M. (2006). Pattern recognition and machine learning,
volume 4. Springer.

Brehmer, M. and Munzner, T. (2013). A multi-level typology of abstract visualization
tasks. IEEE Trans. Visualization and Computer Graphics (TVCG) (Proc. InfoVis),
19(12):2376–2385.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Brown, J. (2009). Choosing the right number of components or factors in pca and efa.
JALT Testing & Evaluation SIG Newsletter, 13(2).

Cai, M., Bowe, B., Xie, Y., and Al-Aly, Z. (2021). Temporal trends of covid-19 mortality
and hospitalisation rates: an observational cohort study from the us department of
veterans affairs. BMJ open, 11(8):e047369.

Caliński, T. and JA, H. (1974). A dendrite method for cluster analysis. Communications
in Statistics - Theory and Methods, 3:1–27.

Card, M. (1999). Readings in information visualization: using vision to think. Morgan
Kaufmann.

Carrieri, V., Madio, L., and Principe, F. (2019). Vaccine hesitancy and (fake) news:
Quasi-experimental evidence from italy. Health economics, 28(11):1377–1382.

Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A. (1985). Graphical
methods for data analysis. Wadsworth.

Chan, T. and Vese, L. (1999). An active contour model without edges. In Nielsen, M.,
Johansen, P., Olsen, O. F., and Weickert, J., editors, Scale-Space Theories in Computer
Vision, pages 141–151, Berlin, Heidelberg. Springer Berlin Heidelberg.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence research,
16:321–357.

152



Chen, B., Zhang, R., Gan, Y., Yang, L., and Li, W. (2017). Development and clinical
application of radiomics in lung cancer. Radiation Oncology, 12(1):1–8.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining, pages 785–794.

Chernoff, H. (1973). The use of faces to represent points in k-dimensional space graphically.
Journal of the American statistical Association, 68(342):361–368.

Choo, J. and Liu, S. (2018). Visual analytics for explainable deep learning. IEEE
computer graphics and applications, 38(4):84–92.

Conti, S., Ferrara, P., Fornari, C., Harari, S., Madotto, F., Silenzi, A., Zucchi, A.,
Manzoli, L., and Mantovani, L. G. (2020). Estimates of the initial impact of the
covid-19 epidemic on overall mortality: evidence from italy. ERJ Open Research, 6(2).

Cook, K. A. and Thomas, J. J. (2005). Illuminating the path: The research and
development agenda for visual analytics.

Correia, P. L. and Pereira, F. (2002). Stand-alone objective segmentation quality
evaluation. EURASIP Journal on Advances in Signal Processing, 2002(4):1–12.

Dai, Z., Zeng, D., Cui, D., Wang, D., Feng, Y., Shi, Y., Zhao, L., Xu, J., Guo, W., Yang,
Y., et al. (2020). Prediction of covid-19 patients at high risk of progression to severe
disease. Frontiers in Public Health, 8.

Davis, J. and Goadrich, M. (2006). The relationship between precision-recall and roc
curves. In Proceedings of the 23rd international conference on Machine learning, pages
233–240.

Deiana, C., Geraci, A., Mazzarella, G., and Sabatini, F. (2022). Perceived risk and vaccine
hesitancy: Quasi-experimental evidence from italy. Health Economics, 31(6):1266–1275.

Eavis, T. and Japkowicz, N. (2000). A recognition-based alternative to discrimination-
based multi-layer perceptrons. In Conference of the Canadian Society for Computational
Studies of Intelligence, pages 280–292. Springer.

Fernandez, N. F., Gundersen, G. W., Rahman, A., Grimes, M. L., Rikova, K., Hornbeck,
P., and Ma’ayan, A. (2017). Clustergrammer, a web-based heatmap visualization and
analysis tool for high-dimensional biological data. Scientific data, 4(1):1–12.

Floricel, C., Nipu, N., Biggs, M., Wentzel, A., Canahuate, G., Dijk, L. V., Mohamed, A.,
Fuller, C., and Marai, G. E. (2021). Thalis: Human-machine analysis of longitudinal
symptoms in cancer therapy. IEEE Transactions on Visualization and Computer
Graphics, pages 1–1.

153



Fontanet, A., Tondeur, L., Madec, Y., Grant, R., Besombes, C., Jolly, N., Pellerin, S. F.,
Ungeheuer, M.-N., Cailleau, I., Kuhmel, L., Temmam, S., Huon, C., Chen, K.-Y.,
Crescenzo, B., Munier, S., Demeret, C., Grzelak, L., Staropoli, I., Bruel, T., Gallian,
P., Cauchemez, S., van der Werf, S., Schwartz, O., Eloit, M., and Hoen, B. (2020).
Cluster of covid-19 in northern france: A retrospective closed cohort study. medRxiv.

Freedman, D. and Diaconis, P. (1981). On the histogram as a density estimator: L 2 theory.
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 57(4):453–476.

French, J., Deshpande, S., Evans, W., and Obregon, R. (2020). Key guidelines in
developing a pre-emptive covid-19 vaccination uptake promotion strategy. International
Journal of Environmental Research and Public Health, 17(16).

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189–1232.

Furmanová, K., Grossmann, N., Muren, L. P., Casares-Magaz, O., Moiseenko, V., Einck,
J. P., Gröller, M. E., and Raidou, R. G. (2020). Vapor: Visual analytics for the
exploration of pelvic organ variability in radiotherapy. Computers & Graphics, 91:25–
38.

Furmanová, K., Muren, L. P., Casares-Magaz, O., Moiseenko, V., Einck, J. P., Pilskog, S.,
and Raidou, R. G. (2021). Previs: Predictive visual analytics of anatomical variability
for radiotherapy decision support. Computers & Graphics, 97:126–138.

Gavin, B., Hayden, J., Adamis, D., and McNicholas, F. (2020). Caring for the psycholog-
ical well-being of healthcare workers in the covid-19 pandemic crisis.

Gehrau, V., Fujarski, S., Lorenz, H., Schieb, C., and Blöbaum, B. (2021). The impact of
health information exposure and source credibility on covid-19 vaccination intention in
germany. International Journal of Environmental Research and Public Health, 18(9).

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward
neural networks. In Teh, Y. W. and Titterington, M., editors, Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, volume 9
of Proceedings of Machine Learning Research, pages 249–256, Chia Laguna Resort,
Sardinia, Italy. PMLR.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Grus, J. (2019). Data science from scratch: first principles with python. O’Reilly Media.

154

http://www.deeplearningbook.org


Han, Y., Chen, C., Tewfik, A., Ding, Y., and Peng, Y. (2021). Pneumonia detection
on chest x-ray using radiomic features and contrastive learning. In 2021 IEEE 18th
International Symposium on Biomedical Imaging (ISBI), pages 247–251.

Harrison, L., Reinecke, K., and Chang, R. (2015). Infographic aesthetics: Designing for
the first impression. In Proceedings of the 33rd Annual ACM conference on human
factors in computing systems, pages 1187–1190.

Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.

Heaven, W. D. (2021). Hundreds of ai tools have been built to catch covid. none of them
helped. Online; last accessed 03.05.2022.

Heinrich, J. and Weiskopf, D. (2013). State of the art of parallel coordinates. Eurographics
(State of the Art Reports), pages 95–116.

Hinton, G. E. and Roweis, S. (2002). Stochastic neighbor embedding. In Becker, S.,
Thrun, S., and Obermayer, K., editors, Advances in Neural Information Processing
Systems, volume 15. MIT Press.

Holzinger, A. (2018). From machine learning to explainable ai. In 2018 world symposium
on digital intelligence for systems and machines (DISA), pages 55–66. IEEE.

Hua, J. and Shaw, R. (2020). Corona virus (covid-19)“infodemic” and emerging issues
through a data lens: The case of china. International journal of environmental research
and public health, 17(7):2309.

Huang, Q. and Dom, B. (1995). Quantitative methods of evaluating image segmentation.
In Proceedings., International Conference on Image Processing, volume 3, pages 53–56
vol.3.

Iglovikov, V. and Shvets, A. (2018). Ternausnet: U-net with vgg11 encoder pre-trained
on imagenet for image segmentation. ArXiv e-prints.

Inselberg, A. (1985). The plane with parallel coordinates. The visual computer, 1(2):69–91.

Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., and Möller, T. (2013). A systematic
review on the practice of evaluating visualization. IEEE Transactions on Visualization
and Computer Graphics, 19(12):2818–2827.

Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., and Maier-Hein, K. H. (2021). nnu-
net: a self-configuring method for deep learning-based biomedical image segmentation.
Nature methods, 18(2):203–211.

155



Islam, J. and Zhang, Y. (2018). Towards robust lung segmentation in chest radiographs
with deep learning. arXiv preprint arXiv:1811.12638.

Jaeger, S., Candemir, S., Antani, S., Wáng, Y.-X. J., Lu, P.-X., and Thoma, G. (2014).
Two public chest x-ray datasets for computer-aided screening of pulmonary diseases.
Quantitative imaging in medicine and surgery, 4(6):475.

Jerez, J. M., Molina, I., García-Laencina, P. J., Alba, E., Ribelles, N., Martín, M., and
Franco, L. (2010). Missing data imputation using statistical and machine learning
methods in a real breast cancer problem. Artificial intelligence in medicine, 50(2):105–
115.

Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models.
International journal of computer vision, 1(4):321–331.

Katal, A., Wazid, M., and Goudar, R. H. (2013). Big data: issues, challenges, tools and
good practices. In 2013 Sixth international conference on contemporary computing
(IC3), pages 404–409. IEEE.

Keim, D. A. (2002). Information visualization and visual data mining. IEEE transactions
on Visualization and Computer Graphics, 8(1):1–8.

Keim, D. A., Mansmann, F., Stoffel, A., and Ziegler, H. (2008). Visual analytics.

Kermali, M., Khalsa, R. K., Pillai, K., Ismail, Z., and Harky, A. (2020). The role of
biomarkers in diagnosis of covid-19–a systematic review. Life sciences, 254:117788.

Khan, I. U. and Aslam, N. (2020). A deep-learning-based framework for automated
diagnosis of covid-19 using x-ray images. Information, 11(9):419.

Kohavi, R. et al. (1995). A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Ijcai, volume 14, pages 1137–1145. Montreal, Canada.

Kohlberger, T., Singh, V. K., Alvino, C. V., Bahlmann, C., and Grady, L. J. (2012).
Evaluating segmentation error without ground truth. Medical image computing and
computer-assisted intervention : MICCAI ... International Conference on Medical
Image Computing and Computer-Assisted Intervention, 15 Pt 1:528–36.

Kosara, R. and Skau, D. (2016). Judgment error in pie chart variations. page 91–95.

Lambin, P., Leijenaar, R. T., Deist, T. M., Peerlings, J., De Jong, E. E., Van Timmeren,
J., Sanduleanu, S., Larue, R. T., Even, A. J., Jochems, A., et al. (2017). Radiomics:
the bridge between medical imaging and personalized medicine. Nature reviews Clinical
oncology, 14(12):749–762.

Legido-Quigley, H., Mateos-García, J. T., Campos, V. R., Gea-Sánchez, M., Muntaner,
C., and McKee, M. (2020). The resilience of the spanish health system against the
covid-19 pandemic. The lancet public health, 5(5):e251–e252.

156



Lever, J. (2016). Classification evaluation: It is important to understand both what a
classification metric expresses and what it hides. Nature methods, 13(8):603–605.

Li, F.-F., Krishna, R., and Xu, D. (2022). Cs231n convolutional neural networks for
visual recognition. Online; last accessed 19.01.2022.

Li, X., Ge, P., Zhu, J., Li, H., Graham, J., Singer, A., Richman, P. S., and Duong,
T. Q. (2020a). Deep learning prediction of likelihood of icu admission and mortality in
covid-19 patients using clinical variables. PeerJ, 8:e10337.

Li, Y., Horowitz, M. A., Liu, J., Chew, A., Lan, H., Liu, Q., Sha, D., and Yang, C.
(2020b). Individual-level fatality prediction of covid-19 patients using ai methods.
Frontiers in Public Health, 8:566.

Little, R. J. and Rubin, D. B. (2019). Statistical Analysis with Missing Data, volume 793.
John Wiley & Sons.

Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101.

Magg, C., Toussaint, L., Muren, L. P., Indelicato, D. J., and Raidou, R. G. (2021). Visual
Assessment of Growth Prediction in Brain Structures after Pediatric Radiotherapy. In
Oeltze-Jafra, S., Smit, N. N., Sommer, B., Nieselt, K., and Schultz, T., editors, Euro-
graphics Workshop on Visual Computing for Biology and Medicine. The Eurographics
Association.

Mahase, E. (2020). Covid-19: death rate is 0.66% and increases with age, study estimates.
BMJ: British Medical Journal (Online), 369.

Malik, P., Patel, U., Mehta, D., Patel, N., Kelkar, R., Akrmah, M., Gabrilove, J. L., and
Sacks, H. (2021). Biomarkers and outcomes of covid-19 hospitalisations: systematic
review and meta-analysis. BMJ evidence-based medicine, 26(3):107–108.

Mayerhoefer, M. E., Materka, A., Langs, G., Häggström, I., Szczypiński, P., Gibbs,
P., and Cook, G. (2020). Introduction to radiomics. Journal of Nuclear Medicine,
61(4):488–495.

Metsalu, T. and Vilo, J. (2015). Clustvis: a web tool for visualizing clustering of
multivariate data using principal component analysis and heatmap. Nucleic acids
research, 43(W1):W566–W570.

Miksch, S. and Aigner, W. (2014). A matter of time: Applying a data–users–tasks design
triangle to visual analytics of time-oriented data. Computers & Graphics, 38:286–290.

Molnar, C. (2022). Interpretable Machine Learning. 2 edition.

Munzner, T. (2009). A nested model for visualization design and validation. IEEE
transactions on visualization and computer graphics, 15(6):921–928.

157



Munzner, T. (2014). Visualization analysis and design. CRC press.

Márquez-Neila, P., Baumela, L., and Alvarez, L. (2014). A morphological approach
to curvature-based evolution of curves and surfaces. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 36(1):2–17.

Nielsen, J. (1994). Usability engineering. Morgan Kaufmann.

Norval, M., Wang, Z., and Sun, Y. (2019). Pulmonary tuberculosis detection using
deep learning convolutional neural networks. In Proceedings of the 3rd International
Conference on Video and Image Processing, ICVIP 2019, page 47–51, New York, NY,
USA. Association for Computing Machinery.

Nusrat, S., Harbig, T., and Gehlenborg, N. (2019). Tasks, techniques, and tools for
genomic data visualization. In Computer Graphics Forum, volume 38, pages 781–805.
Wiley Online Library.

Ovcharenko, I. (2019). Lung-segmentation. Online; last accessed 23.04.2022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep learning library. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors,
Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc.

Pearson, K. (1895). X. contributions to the mathematical theory of evolution.—ii. skew
variation in homogeneous material. Philosophical Transactions of the Royal Society of
London.(A.), (186):343–414.

Pham, D. L., Xu, C., and Prince, J. L. (2000). Current methods in medical image
segmentation. Annual review of biomedical engineering, 2(1):315–337.

Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez,
J. L., Marc, G. P., Moreira, E. D., Zerbini, C., et al. (2020). Safety and efficacy of the
bnt162b2 mrna covid-19 vaccine. New England journal of medicine.

Ponti, G., Maccaferri, M., Ruini, C., Tomasi, A., and Ozben, T. (2020). Biomarkers
associated with covid-19 disease progression. Critical reviews in clinical laboratory
sciences, 57(6):389–399.

Prince, S. J. (2012). Computer vision: models, learning, and inference. Cambridge
University Press.

Provost, F., Fawcett, T., and Kohavi, R. (1998). The case against accuracy estimation
for comparing induction algorithms 1998. In Proceedings of the 15th international
conference on machine learning ICML-98 Morgan Kaufmann. San Mateo, CA.

158



Pu, J., Leader, J., Bandos, A., Shi, J., Du, P., Yu, J., Yang, B., Ke, S., Guo, Y., Field,
J. B., et al. (2020). Any unique image biomarkers associated with covid-19? European
radiology, 30(11):6221–6227.

Puri, N., Coomes, E. A., Haghbayan, H., and Gunaratne, K. (2020). Social media and
vaccine hesitancy: new updates for the era of covid-19 and globalized infectious diseases.
Human vaccines & immunotherapeutics, 16(11):2586–2593.

Radiomics (2022). Pyradiomics documentation. Online; last accessed 23.03.2022.

Reitermanova, Z. et al. (2010). Data splitting. In WDS, volume 10, pages 31–36.

Reno, C., Maietti, E., Fantini, M. P., Savoia, E., Manzoli, L., Montalti, M., and Gori,
D. (2021). Enhancing covid-19 vaccines acceptance: results from a survey on vaccine
hesitancy in northern italy. Vaccines, 9(4):378.

Roberts, M., Driggs, D., Thorpe, M., Gilbey, J., Yeung, M., Ursprung, S., Aviles-
Rivero, A. I., Etmann, C., McCague, C., Beer, L., et al. (2021). Common pitfalls and
recommendations for using machine learning to detect and prognosticate for covid-19
using chest radiographs and ct scans. Nature Machine Intelligence, 3(3):199–217.

Rokach, L. and Maimon, O. (2005). Clustering methods. In Data mining and knowledge
discovery handbook, pages 321–352. Springer.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–241. Springer.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65.

Ruiz-Fernández, M. D., Ramos-Pichardo, J. D., Ibáñez-Masero, O., Cabrera-Troya, J.,
Carmona-Rega, M. I., and Ortega-Galán, Á. M. (2020). Compassion fatigue, burnout,
compassion satisfaction and perceived stress in healthcare professionals during the
covid-19 health crisis in spain. Journal of clinical nursing, 29(21-22):4321–4330.

Saary, M. J. (2008). Radar plots: a useful way for presenting multivariate health care
data. Journal of clinical epidemiology, 61(4):311–317.

Sacha, D., Sedlmair, M., Zhang, L., Lee, J. A., Peltonen, J., Weiskopf, D., North, S. C.,
and Keim, D. A. (2017). What you see is what you can change: Human-centered
machine learning by interactive visualization. Neurocomputing, 268:164–175. Advances
in artificial neural networks, machine learning and computational intelligence.

Saltz, J., Saltz, M., Prasanna, P., Moffitt, R., Hajagos, J., Bremer, E., Balsamo, J., and
Kurc, T. (2021). Stony brook university covid-19 positive cases (covid-19-ny-sbu). The
Cancer Imaging Archive. Online; Version 2021/08/11; accessed December 2021.

159



Sarikaya, A. and Gleicher, M. (2017). Scatterplots: Tasks, data, and designs. IEEE
transactions on visualization and computer graphics, 24(1):402–412.

Schmid, P., Rauber, D., Betsch, C., Lidolt, G., and Denker, M.-L. (2017). Barriers of
influenza vaccination intention and behavior–a systematic review of influenza vaccine
hesitancy, 2005–2016. PloS one, 12(1):e0170550.

Schubert, E., Sander, J., Ester, M., Kriegel, H. P., and Xu, X. (2017). Dbscan revisited,
revisited: why and how you should (still) use dbscan. ACM Transactions on Database
Systems (TODS), 42(3):1–21.

Schütze, H., Manning, C. D., and Raghavan, P. (2008). Introduction to information
retrieval, volume 39. Cambridge University Press Cambridge.

Sedlmair, M., Meyer, M., and Munzner, T. (2012). Design study methodology: Reflections
from the trenches and the stacks. IEEE transactions on visualization and computer
graphics, 18(12):2431–2440.

Shiraishi, J., Katsuragawa, S., Ikezoe, J., Matsumoto, T., Kobayashi, T., Komatsu, K.-i.,
Matsui, M., Fujita, H., Kodera, Y., and Doi, K. (2000). Development of a digital image
database for chest radiographs with and without a lung nodule: receiver operating
characteristic analysis of radiologists’ detection of pulmonary nodules. American
Journal of Roentgenology, 174(1):71–74.

Shlens, J. (2014). A tutorial on principal component analysis.

Shneiderman, B. (2003). The eyes have it: A task by data type taxonomy for information
visualizations. In The craft of information visualization, pages 364–371. Elsevier.

Siirtola, H. (2019). The cost of pie charts. In 2019 23rd International Conference
Information Visualisation (IV), pages 151–156.

Skau, D. and Kosara, R. (2016). Arcs, angles, or areas: Individual data encodings in pie
and donut charts. 35(3):121–130.

Smiciklas, M. (2012). The power of infographics: Using pictures to communicate and
connect with your audiences. Que Publishing.

Souza, J. C., Bandeira Diniz, J. O., Ferreira, J. L., França da Silva, G. L., Corrêa Silva,
A., and de Paiva, A. C. (2019). An automatic method for lung segmentation and
reconstruction in chest x-ray using deep neural networks. Computer Methods and
Programs in Biomedicine, 177:285–296.

Spence, I. and Lewandowsky, S. (1991). Displaying proportions and percentages. Applied
Cognitive Psychology, 5(1):61–77.

Steinbach, M., Ertöz, L., and Kumar, V. (2004). The challenges of clustering high
dimensional data. In New directions in statistical physics, pages 273–309. Springer.

160



Strimbu, K. and Tavel, J. A. (2010). What are biomarkers? Current Opinion in HIV
and AIDS, 5(6):463.

Tamal, M., Alshammari, M., Alabdullah, M., Hourani, R., Alola, H. A., and Hegazi, T. M.
(2021). An integrated framework with machine learning and radiomics for accurate and
rapid early diagnosis of covid-19 from chest x-ray. Expert systems with applications,
180:115152.

Trutschl, M., Grinstein, G., and Cvek, U. (2003). Intelligently resolving point occlusion.
In IEEE Symposium on Information Visualization 2003 (IEEE Cat. No. 03TH8714),
pages 131–136. IEEE.

Tufte, E. R. (1985). The visual display of quantitative information. The Journal for
Healthcare Quality (JHQ), 7(3):15.

Udeshani, K., Meegama, R., and Fernando, T. (2011). Statistical feature-based neural
network approach for the detection of lung cancer in chest x-ray images. International
Journal of Image Processing (IJIP), 5(4):425–434.

Ullman, S. (2000). High-level vision: Object recognition and visual cognition. MIT press.

User:Schutz (2007). Pie vs bar chart. Online; last accessed 28.06.2022.

Valindria, V. V., Lavdas, I., Bai, W., Kamnitsas, K., Aboagye, E. O., Rockall, A. G.,
Rueckert, D., and Glocker, B. (2017). Reverse classification accuracy: Predicting
segmentation performance in the absence of ground truth. IEEE Transactions on
Medical Imaging, 36(8):1597–1606.

Van Buuren, S. (2018). Flexible imputation of missing data. CRC press.

Van der Heijden, G. J., Donders, A. R. T., Stijnen, T., and Moons, K. G. (2006).
Imputation of missing values is superior to complete case analysis and the missing-
indicator method in multivariable diagnostic research: a clinical example. Journal of
clinical epidemiology, 59(10):1102–1109.

Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of
machine learning research, 9(11).

Van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D.,
Yager, N., Gouillart, E., and Yu, T. (2014). scikit-image: image processing in python.
PeerJ, 2:e453.

van Griethuysen, J. (2020a). Github issue - [feat extraction] wonder how features are
caculated for mask with multi rois. Online; last accessed 27.03.2022.

van Griethuysen, J. (2020b). Github issue - how to extract features from multi rois in
one scan slice? Online; last accessed 27.03.2022.

161



van Griethuysen, J. J., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-
Tan, R. G., Fillion-Robin, J.-C., Pieper, S., and Aerts, H. J. (2017). Computational
radiomics system to decode the radiographic phenotype. Cancer Research, 77(21):e104–
e107.

Varghese, B. A., Shin, H., Desai, B., Gholamrezanezhad, A., Lei, X., Perkins, M., Oberai,
A., Nanda, N., Cen, S., and Duddalwar, V. (2021). Predicting clinical outcomes in
covid-19 using radiomics on chest radiographs. The British Journal of Radiology,
94(1126):20210221.

Veneti, L., Bøås, H., Kristoffersen, A. B., Stålcrantz, J., Bragstad, K., Hungnes, O.,
Storm, M. L., Aasand, N., Rø, G., Starrfelt, J., et al. (2022). Reduced risk of
hospitalisation among reported covid-19 cases infected with the sars-cov-2 omicron ba.
1 variant compared with the delta variant, norway, december 2021 to january 2022.
Eurosurveillance, 27(4):2200077.

Vidal, P. L., de Moura, J., Novo, J., and Ortega, M. (2021). Multi-stage transfer learning
for lung segmentation using portable x-ray devices for patients with covid-19. Expert
Systems with Applications, 173:114677.

Wattenberg, M., Viégas, F., and Johnson, I. (2016). How to use t-sne effectively. Distill,
1(10):e2.

Yenduri, S. and Iyengar, S. S. (2007). Performance evaluation of imputation methods for
incomplete datasets. International Journal of Software Engineering and Knowledge
Engineering, 17(01):127–152.

Yim, O. and Ramdeen, K. T. (2015). Hierarchical cluster analysis: comparison of three
linkage measures and application to psychological data. The quantitative methods for
psychology, 11(1):8–21.

Zebin, T. and Rezvy, S. (2021). Covid-19 detection and disease progression visualiza-
tion: Deep learning on chest x-rays for classification and coarse localization. Applied
Intelligence, 51(2):1010–1021.

Zhao, Z., Chen, A., Hou, W., Graham, J. M., Li, H., Richman, P. S., Thode, H. C., Singer,
A. J., and Duong, T. Q. (2020). Prediction model and risk scores of icu admission and
mortality in covid-19. PloS one, 15(7):e0236618.

Zhu, J., Shen, B., Abbasi, A., Hoshmand-Kochi, M., Li, H., and Duong, T. Q. (2020).
Deep transfer learning artificial intelligence accurately stages covid-19 lung disease
severity on portable chest radiographs. PloS one, 15(7):e0236621.

Zwanenburg, A., Leger, S., Vallières, M., and Löck, S. (2016). Image biomarker stan-
dardisation initiative. arXiv preprint arXiv:1612.07003.

162



Zwanenburg, A., Vallières, M., Abdalah, M. A., Aerts, H. J. W. L., Andrearczyk, V.,
Apte, A., Ashrafinia, S., Bakas, S., Beukinga, R. J., Boellaard, R., Bogowicz, M.,
Boldrini, L., Buvat, I., Cook, G. J. R., Davatzikos, C., Depeursinge, A., Desseroit,
M.-C., Dinapoli, N., Dinh, C. V., Echegaray, S., Naqa, I. E., Fedorov, A. Y., Gatta,
R., Gillies, R. J., Goh, V., Götz, M., Guckenberger, M., Ha, S. M., Hatt, M., Isensee,
F., Lambin, P., Leger, S., Leijenaar, R. T., Lenkowicz, J., Lippert, F., Losnegård, A.,
Maier-Hein, K. H., Morin, O., Müller, H., Napel, S., Nioche, C., Orlhac, F., Pati, S.,
Pfaehler, E. A., Rahmim, A., Rao, A. U., Scherer, J., Siddique, M. M., Sijtsema, N. M.,
Fernandez, J. S., Spezi, E., Steenbakkers, R. J., Tanadini-Lang, S., Thorwarth, D.,
Troost, E. G., Upadhaya, T., Valentini, V., van Dijk, L. V., van Griethuysen, J., van
Velden, F. H., Whybra, P., Richter, C., and Löck, S. (2020). The image biomarker
standardization initiative: Standardized quantitative radiomics for high-throughput
image-based phenotyping. Radiology, 295(2):328–338.

163


	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Aim of the Work
	Methodology
	Outline

	Background
	COVID-19
	User Groups

	Dataset Description
	Overview
	Prediction Targets


	Theoretical Background & Related Work
	Recent Work about COVID-19
	Classification
	Prediction
	Biomarkers

	Segmentation & Feature Extraction in Medical Imaging Data
	Traditional Approaches
	Deep Learning
	Solutions in Deep Learning
	Radiomics

	Dealing with Clinical Data
	Missing Data Types
	Imputation
	Dimensionality Reduction

	Data Science Foundations
	Data Splitting
	Model Performance Evaluation
	Working with Imbalanced Data
	Clustering Methods
	Prediction Models

	Visual Analytics
	Visualisation Principles
	Requirement Analysis
	Validation


	Data Analytics
	Data Preprocessing
	Missing Data and Imputation Strategies

	Task & Requirement Analysis
	Medical Experts
	Analytical Experts
	General Population

	Clinical Data
	Clustering
	Prediction

	Medical Image Data
	Transfer Learning
	Image Preprocessing
	Model Evaluation - Qualitative
	Model Evaluation - Quantitative
	Feature Extraction
	Radiomics Feature Exploration
	Prediction using Radiomics Features

	Combining Features
	Environment
	Visual Analytics
	Task Implications
	Interaction & Interface


	Results and Evaluation
	Quantitative Evaluation
	Clustering
	Clinical Data Prediction
	Image Data
	Combined Prediction

	Qualitative Evaluation
	Medical Experts
	Analytical Experts
	General Pop
	Runtime Performance
	Case Studies
	Discussion & Limitations


	Conclusion and Future Work
	Appendix
	List of Figures
	List of Tables
	Bibliography

